Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling (original) (raw)

References

  1. Massagué, J., Hata, A. & Liu, F. TGF-β signalling through the Smad pathway. Trends Cell Biol. 7, 187–192 (1997).
    Google Scholar
  2. Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552 (1996).
    Article CAS Google Scholar
  3. Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383, 168–172 (1996).
    Article ADS CAS Google Scholar
  4. Macías-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signalling. Cell 87, 1215–1224 (1996).
    Article Google Scholar
  5. Nakao, A. et al. TGF-β receptor mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16, 5353–5362 (1997).
    Article CAS Google Scholar
  6. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).
    Article ADS CAS Google Scholar
  7. Zhang, Y., Musci, T. & Derynck, R. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr. Biol. 7, 270–276 (1997).
    Article Google Scholar
  8. Wu, R.-Y., Zhang, Y., Feng, X.-H. & Derynck, R. Heteromeric and homomeric interactions correlate with signalling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17, 2521–2528 (1997).
    Article CAS Google Scholar
  9. Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. Astructural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87–93 (1997).
    Article ADS CAS Google Scholar
  10. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).
    Article CAS Google Scholar
  11. Chen, X., Rubock, M. J. & Whitman, M. Atranscriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).
    Article ADS CAS Google Scholar
  12. Kim, J., Johnson, K., Chen, H. J., Carrol, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–308 (1997).
    Article ADS CAS Google Scholar
  13. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).
    Article ADS CAS Google Scholar
  14. Hemmati-Brivanlou, A. & Melton, D. Atruncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).
    Article ADS CAS Google Scholar
  15. Chang, C., Wilson, P. A., Mathews, L. S. & Hemmati-Brivanlou, A. A. Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development 124, 827–837 (1997).
    CAS PubMed Google Scholar
  16. Smith, J. C., Price, B. M. J., Green, J. B., Weigel, D. & Herrman, B. G. Expression of a Xenopus homolog of Brachury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).
    Article CAS Google Scholar
  17. Kessler, D. S. & Melton, D. A. Vertebrate embryonic induction: mesodermal and neural patterning. Science 266, 596–604 (1994).
    Article ADS CAS Google Scholar
  18. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165–1173 (1997).
    Article CAS Google Scholar
  19. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic progein-4. Cell 86, 599–606 (1996).
    Article CAS Google Scholar
  20. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).
    Article CAS Google Scholar
  21. Wang, T. et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 86, 435–444 (1996).
    Article CAS Google Scholar
  22. Chen, Y.-G., Liu, F. & Massagué, J. Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J. 16, 3866–3876 (1997).
    Article CAS Google Scholar
  23. Luo, K. & Lodish, H. F. Positive and negative regulation of type II TGF-β recptor signal transuction by autophosphorylation on multiple serines. EMBO J. 16, 1970–1981 (1997).
    Article CAS Google Scholar
  24. Afrakhte, M., Nister, M., Ostman, A., Westermark, B. & Paulsson, Y. Production of cell-associated PDGF-AA by a human sarcoma cell line: evidence for a latent autocrine effect. Int. J. Cancer 68, 802–809 (1996).
    Article Google Scholar
  25. Datto, M. B., Yu, Y. & Wang, X. F. Functional analysis of the transforming growth factor β responsive elements in the WAF/Cip/p21 promoter. J. Biol. Chem. 270, 28623–28628 (1995).
    Article CAS Google Scholar
  26. Moon, R. T. & Christian, J. L. Microinjection and expression of synthetic mRNAs in Xenopus embryos. Technique 1, 76–89 (1989).
    CAS Google Scholar
  27. Dale, L., Matthews, G. & Colman, A. Secretion and mesoderm-inducing activity of the TGF-β related domain of Xenopus Vg1. EMBO J. 12, 4471–4480 (1993).
    Article CAS Google Scholar
  28. Cui, Y., Tian, Q. & Christian, J. L. Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev. Biol. 180, 22–34 (1996).
    Article CAS Google Scholar
  29. Turner, D. & Weintraub, H. Expression of acheate-schute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).
    Article CAS Google Scholar

Download references