Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling (original) (raw)
References
Massagué, J., Hata, A. & Liu, F. TGF-β signalling through the Smad pathway. Trends Cell Biol.7, 187–192 (1997). Google Scholar
Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell86, 543–552 (1996). ArticleCAS Google Scholar
Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature383, 168–172 (1996). ArticleADSCAS Google Scholar
Macías-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signalling. Cell87, 1215–1224 (1996). Article Google Scholar
Nakao, A. et al. TGF-β receptor mediated signalling through Smad2, Smad3 and Smad4. EMBO J.16, 5353–5362 (1997). ArticleCAS Google Scholar
Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature383, 832–836 (1996). ArticleADSCAS Google Scholar
Zhang, Y., Musci, T. & Derynck, R. The tumor suppressor Smad4/DPC4 as a central mediator of Smad function. Curr. Biol.7, 270–276 (1997). Article Google Scholar
Wu, R.-Y., Zhang, Y., Feng, X.-H. & Derynck, R. Heteromeric and homomeric interactions correlate with signalling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol.17, 2521–2528 (1997). ArticleCAS Google Scholar
Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. Astructural basis for mutational inactivation of the tumour suppressor Smad4. Nature388, 87–93 (1997). ArticleADSCAS Google Scholar
Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev.11, 984–995 (1997). ArticleCAS Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. Atranscriptional partner for MAD proteins in TGF-β signalling. Nature383, 691–696 (1996). ArticleADSCAS Google Scholar
Kim, J., Johnson, K., Chen, H. J., Carrol, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature388, 304–308 (1997). ArticleADSCAS Google Scholar
Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature389, 622–626 (1997). ArticleADSCAS Google Scholar
Hemmati-Brivanlou, A. & Melton, D. Atruncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature359, 609–614 (1992). ArticleADSCAS Google Scholar
Chang, C., Wilson, P. A., Mathews, L. S. & Hemmati-Brivanlou, A. A. Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development124, 827–837 (1997). CASPubMed Google Scholar
Smith, J. C., Price, B. M. J., Green, J. B., Weigel, D. & Herrman, B. G. Expression of a Xenopus homolog of Brachury (T) is an immediate-early response to mesoderm induction. Cell67, 79–87 (1991). ArticleCAS Google Scholar
Kessler, D. S. & Melton, D. A. Vertebrate embryonic induction: mesodermal and neural patterning. Science266, 596–604 (1994). ArticleADSCAS Google Scholar
Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell89, 1165–1173 (1997). ArticleCAS Google Scholar
Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic progein-4. Cell86, 599–606 (1996). ArticleCAS Google Scholar
Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell86, 589–598 (1996). ArticleCAS Google Scholar
Wang, T. et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell86, 435–444 (1996). ArticleCAS Google Scholar
Chen, Y.-G., Liu, F. & Massagué, J. Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J.16, 3866–3876 (1997). ArticleCAS Google Scholar
Luo, K. & Lodish, H. F. Positive and negative regulation of type II TGF-β recptor signal transuction by autophosphorylation on multiple serines. EMBO J.16, 1970–1981 (1997). ArticleCAS Google Scholar
Afrakhte, M., Nister, M., Ostman, A., Westermark, B. & Paulsson, Y. Production of cell-associated PDGF-AA by a human sarcoma cell line: evidence for a latent autocrine effect. Int. J. Cancer68, 802–809 (1996). Article Google Scholar
Datto, M. B., Yu, Y. & Wang, X. F. Functional analysis of the transforming growth factor β responsive elements in the WAF/Cip/p21 promoter. J. Biol. Chem.270, 28623–28628 (1995). ArticleCAS Google Scholar
Moon, R. T. & Christian, J. L. Microinjection and expression of synthetic mRNAs in Xenopus embryos. Technique1, 76–89 (1989). CAS Google Scholar
Dale, L., Matthews, G. & Colman, A. Secretion and mesoderm-inducing activity of the TGF-β related domain of Xenopus Vg1. EMBO J.12, 4471–4480 (1993). ArticleCAS Google Scholar
Cui, Y., Tian, Q. & Christian, J. L. Synergistic effects of Vg1 and Wnt signals in the specification of dorsal mesoderm and endoderm. Dev. Biol.180, 22–34 (1996). ArticleCAS Google Scholar
Turner, D. & Weintraub, H. Expression of acheate-schute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev.8, 1434–1447 (1994). ArticleCAS Google Scholar