Progress in determining the causes and treatment of multiple sclerosis (original) (raw)
Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science273, 1516–1517 (1996). ArticleADSCASPubMed Google Scholar
Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain112, 133–146 (1989). ArticlePubMed Google Scholar
Weinshenker, B. & Miller, D. in Frontiers in Multiple Sclerosis (eds Siva, A., Kesselring, J. & Thompson, A.) (Dunitz, London, 1998). Google Scholar
Hohlfeld, R. Biotechnological agents for the immunotherapy of multiple sclerosis, principles, problems and perspectives. Brain120, 865–916 (1997). ArticlePubMed Google Scholar
Noseworthy, J. MS clinical trials: old and new challenges. Semin. Neurol.18, 377–388 (1998). ArticleCASPubMed Google Scholar
Cook, S., Rohowsky-Kochan, C., Bansil, S. & Dowling, P. Evidence for multiple sclerosis as an infectious disease. Acta Neurol. Scand.161, 34–42 (1996). Google Scholar
Liedtke, W., Malessa, R., Faustmann, P. & Eis-Hubinger, A. Human herpesvirus 6 polymerase chain reaction findings in human immunodeficiency virus associated neurological disease and multiple sclerosis. J. Neurovirol.1, 253–258 (1995). ArticleCASPubMed Google Scholar
Soldan, S. et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nature Med.3, 1394–1397 (1997). ArticleCASPubMed Google Scholar
Merelli, E. et al. Human herpes virus 6 and human herpes virus 8 DNA sequences in brains of multiple sclerosis patients, normal adults, and children. J. Neurol.244, 450–454 (1997). ArticleCASPubMed Google Scholar
Steinman, L. & Oldstone, M. More mayhem from molecular mimics. Nature Med.3, 1321–1322 (1997). ArticleCASPubMed Google Scholar
Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today19, 395–404 (1998). ArticleCASPubMed Google Scholar
Sanders, V. et al. Herpes simplex virus in postmortem multiple sclerosis brain tissue. Arch. Neurol.53, 125–133 (1996). ArticleCASPubMed Google Scholar
Sanders, V., Felisan, S., Waddell, A. & Tourtellotte, W. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J. Neurovirol.2, 249–258 (1996). ArticleCASPubMed Google Scholar
Mayne, M. et al. Infrequent detection of human herpesvirus 6 DNA in peripheral blood mononuclear cells from multiple sclerosis patients. Ann. Neurol.44, 391–394 (1998). ArticleCASPubMed Google Scholar
van Noort, J. et al. The small heat-shock protein αβ-crystallin as candidate autoantigen in multiple sclerosis. Nature375, 798–801 (1995). ArticleADSCASPubMed Google Scholar
Sadovnick, A., Dyment, D. & Ebers, G. Genetic epidemiology of multiple sclerosis. Epidemiol. Rev.19, 99–106 (1997). ArticleCASPubMed Google Scholar
Bulman, D. & Ebers, G. The geography of multiple sclerosis reflects genetic susceptibility. J. Trop. Geogr. Neurol.2, 66–72 (1992). Google Scholar
Dyment, D., Sadovnick, A. & Ebers, G. Genetics of multiple sclerosis. Hum. Mol. Genet.6, 1693–1698 (1997). [Published erratum appears in Hum. Mol. Genet.6,, 2189 (1997).] ArticleCASPubMed Google Scholar
Little, C. A possible Mendelian explanation for a type of inheritance apparently non-Mendelian in nature. Science40, 904–906 (1917). ArticleADS Google Scholar
Sadovnick, A., Ebers, G., Dyment, D., Risch, N. and the Canadian Collaborative Study Group. Evidence for genetic basis of multiple sclerosis. Lancet347, 1728–1730 (1996). ArticleCASPubMed Google Scholar
Ebers, G., Sadovnick, A., Risch, N. and the Canadian Collaborative Study Group. A genetic basis for familial aggregation in multiple sclerosis. Nature377, 150–151 (1995). ArticleADSCASPubMed Google Scholar
Farrall, M. Mapping genetic susceptibility to multiple sclerosis. Lancet348, 1674–1675 (1996). ArticleCASPubMed Google Scholar
Sawcer, S., Goodfellow, P. & Compston, A. The genetic analysis of multiple sclerosis. Trends Genet.13, 234–239 (1997). ArticleCASPubMed Google Scholar
Zhang, H., Zhao, H. & Merikangas, K. Strategies to identify genes for complex diseases. Ann. Med.29, 493–498 (1997). ArticleCASPubMed Google Scholar
Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet.40, 1–14 (1987). CASPubMedPubMed Central Google Scholar
Haines, J. et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. Hum. Mol. Genet.7, 1229–1234 (1998). ArticleCASPubMed Google Scholar
Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet.13, 464–468 (1996). ArticleCASPubMed Google Scholar
Haines, J. et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nature Genet.13, 469–471 (1996). ArticleCASPubMed Google Scholar
Ebers, G. et al. A full genome search in multiple sclerosis. Nature Genet.13, 472–476 (1996). ArticleCASPubMed Google Scholar
Bell, J. & Lathrop, G. Multiple loci for multiple sclerosis. Nature Genet.13, 377–378 (1996). ArticleCASPubMed Google Scholar
Kuokkanen, S. et al. A putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus Eae2. Nature Genet.13, 477–480 (1996). ArticleCASPubMed Google Scholar
Lucchinetti, C. F., Bruck, W., Rodriguez, M. & Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol.6, 259–274 (1996). ArticleCASPubMed Google Scholar
Storch, M. K. et al. Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann. Neurol.43, 465–471 (1998). ArticleCASPubMed Google Scholar
Compston, A. Remyelination in multiple sclerosis: a challenge for therapy. The 1996 European Charcot Foundation Lecture. Mult. Scler.3, 51–70 (1997). ArticleCASPubMed Google Scholar
Trapp, B. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338, 278–285 (1998). ArticleCASPubMed Google Scholar
Wolinsky, J. S., Narayana, P. A. & Fenstermacher, M. J. Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology40, 1764–1769 (1990). ArticleCASPubMed Google Scholar
Arnold, D. L., Matthews, P. M., Francis, G. & Antel, J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn. Reson. Med.14, 154–159 (1990). ArticleCASPubMed Google Scholar
Arnold, D. L., Matthews, P. M., Francis, G. S., O' Connor, J. & Antel, J. P. Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann. Neurol.31, 235–241 (1992). ArticleCASPubMed Google Scholar
Davie, C. et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain117, 49–58 (1994). ArticlePubMed Google Scholar
Matthews, P. et al. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin. Neurol.18, 327–336 (1998). ArticleCASPubMed Google Scholar
Losseff, N. et al. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain119, 2009–2019 (1996). ArticlePubMed Google Scholar
Losseff, N. et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain119, 701–708 (1996). ArticlePubMed Google Scholar
Waxman, S. Demyelinating diseases — new pathological insights, new therapeutic targets. N. Engl. J. Med.338, 323–325 (1998). CASPubMed Google Scholar
Bunge, M. B., Bunge, R. P. & Ris, H. Ultrastructural study of remyelination in an experimental lesion in the adult cat spinal cord. J. Biophys. Biochem. Cytol.10, 67–94 (1961). ArticleCASPubMedPubMed Central Google Scholar
Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E.-S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol.33, 137–151 (1993). ArticleCASPubMed Google Scholar
Zajicek, J. & Compston, A. Mechanisms of damage and repair in multiple sclerosis — a review. Mult. Scler.1, 61–72 (1995). ArticleCASPubMed Google Scholar
Compston, A. Future options for therapies to limit damage and enhance recovery. Semin. Neurol.18, 405–413 (1998). ArticleCASPubMed Google Scholar
Scolding, N. et al. A proliferative adult human oligodendrocyte progenitor. NeuroReport6, 441–445 (1995). ArticleCASPubMed Google Scholar
Rodriguez, M. & Lennon, V. A. Immunoglobulins promote remyelination in the central nervous system. Ann. Neurol.27, 12–17 (1990). ArticleCASPubMed Google Scholar
Noseworthy, J., O'Brien, P., van Engelen, B. & Rodriguez, M. Intravenous immunoglobulin therapy in multiple sclerosis: progress from the Theiler's virus model to a randomized, double-blinded, placebo-controlled clinical trial. J. Neurol. Neurosurg. Psychiatry57(Suppl.), 11–14 (1994). ArticlePubMedPubMed Central Google Scholar
Noseworthy, J., Weinshenker, B. & O'Brien, P. Intravenous immunoglobulin (IVIg) does not reverse recently acquired, apparently permanent weakness in multiple sclerosis (MS). Ann. Neurol.42, A421 (1997). Google Scholar
Noseworthy, J. et al. Immunoglobulin administration (IVIg) does not reverse visual acuity loss in long-standing optic neuritis associated with multiple sclerosis. Ann. Neurol.44, A504 (1998). Google Scholar
Bostock, H. & Sears, T. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J. Physiol. (Lond.)280, 273–301 (1978). ArticleCASPubMed Central Google Scholar
Waxman, S. in Brain Plasticity, Advances in Neurology (eds Freund, H. J., Sabel, B. A. & Witte, O. W.) 109–120 (Lippincott-Raven, Philadelphia, 1997). Google Scholar
Rivera-Quinones, C. et al. Absence of neurological deficits following extensive demyelination in a class 1-deficient murine model of multiple sclerosis. Nature Med.4, 187–193 (1998). ArticleCASPubMed Google Scholar
Ludwin, S. & Johnson, E. Evidence of a “dying back” gliopathy in demyelinating disease. Ann. Neurol.9, 301–305 (1981). ArticleCASPubMed Google Scholar
Rodriguez, M. Virus-induced demyelination in mice: “dying back” of oligodendrocytes. Mayo Clin. Proc.60, 433–438 (1985). ArticleCASPubMed Google Scholar
Ferguson, B., Matyszak, M., Esiri, M. & Petty, V. Axonal damage in acute multiple sclerosis lesions. Brain120, 393–399 (1997). ArticlePubMed Google Scholar
Miller, D., Grossman, R., Reingold, S. & McFarland, H. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain121, 3–24 (1998). ArticlePubMed Google Scholar
van Walderveen, M. A. A. et al. Correlating MR imaging and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short TR/TE (“T1-weighted”) spin-echo images. Neurology45, 1684–1690 (1995). ArticleCASPubMed Google Scholar
Gass, A. et al. Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann. Neurol.36, 62–67 (1994). ArticleCASPubMed Google Scholar
Kidd, D. et al. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry60, 15–19 (1996). ArticleCASPubMedPubMed Central Google Scholar
Miller, D. Multiple sclerosis: use of MRI in evaluating new therapies. Semin. Neurol.18, 317–325 (1998). ArticleCASPubMed Google Scholar
De Stefano, N. et al. Axonal damage correlated with disability in patients with relapsing-remitting multiple sclerosis: results of a longitudinal magnetic resonance spectroscopy study. Brain121, 1469–1477 (1998). ArticlePubMed Google Scholar
Filippi, M., Rocca, M., Martino, G., Horsfield, M. & Comi, G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol.43, 809–814 (1998). ArticleCASPubMed Google Scholar
Goodkin, D. et al. A serial study of new MS lesions and the white matter from which they arise. Neurology51, 1689–1697 (1998). ArticleCASPubMed Google Scholar
Kidd, D. et al. Central motor conduction time in progressive multiple sclerosis: correlations with MRI and disease activity. Brain121, 1109–1116 (1998). ArticlePubMed Google Scholar
Noseworthy, J. H., Vandervoort, M. K., Hopkins, M. & Ebers, G. C. A referendum on clinical trial research in multiple sclerosis: the opinion of the participants at the Jekyll Island workshop. Neurology39, 977–981 (1989). ArticleCASPubMed Google Scholar
Noseworthy, J. H., Vandervoort, M. K., Wong, C. J. & Ebers, G. C. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology40, 971–975 (1990). ArticleCASPubMed Google Scholar
Noseworthy, J. H. et al. The impact of blinding on the results of a randomized, placebo-controlled multiple sclerosis clinical trial. Neurology44, 16–20 (1994). ArticleCASPubMed Google Scholar
Petkau, J. Statistical methods for evaluating multiple sclerosis therapies. Semin. Neurol.18, 351–375 (1998). ArticleCASPubMed Google Scholar
Stone, L. et al. Characterization of MRI response to treatment with interferon beta-1b: contrastenhancing MRI lesion frequency as a primary outcome measure. Neurology49, 862–869 (1997). ArticleCASPubMed Google Scholar
Calabresi, P., Stone, L., Bash, C., Frank, J. & McFarland, H. Interferon beta results in immediate reduction of contrast-enhanced MRI lesions in multiple sclerosis patients followed by weekly MRI. Neurology48, 1446–1448 (1997). ArticleCASPubMed Google Scholar
Paty, D. W., Li, D. K. B., the UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology43, 662–667 (1993). ArticleCASPubMed Google Scholar
The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Interferon b-1b in the treatment of MS: final outcome of the randomized controlled trial. Neurology45, 1277–1285 (1995).
Simon, J. et al. Magnetic resonance studies of intramuscular interferon b-1a for relapsing multiple sclerosis. Neurology43, 79–87 (1998). CAS Google Scholar
PRISMS (Prevention of relapses and disability by interferon beta-1a subcutaneously in multiple sclerosis) Study Group. Randomised double-blind, placebo-controlled study of interferon beta-1a in relapsing-remitting multiple sclerosis. Lancet352, 1498–1504 (1998).
Kappos, L. and the European Study Group on Interferon beta-1b in secondary-progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet352, 1491–1497 (1998). ArticleCAS Google Scholar
The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology43, 655–661 (1993).
Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol.39, 285–294 (1996). ArticleCASPubMed Google Scholar
Rudick, R. et al. Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. Neurology49, 358–363 (1997). ArticleCASPubMed Google Scholar
Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology45, 1268–1276 (1995). ArticleCASPubMed Google Scholar
Johnson, K. et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology50, 701–708 (1998). ArticleCASPubMed Google Scholar
Fazekas, F., Deisenhammer, F., Strasser-Fuchs, S., Nahler, G., Mamoli, B. and the Austrian Immunoglobulin in MS Study Group. Randomised placebo-controlled trial of monthly intravenous immunoglobulin therapy in relapsing-remitting multiple sclerosis. Lancet349, 589–593 (1997). ArticleCASPubMed Google Scholar
Achiron, A. et al. Intravenous immunoglobulin treatment in multiple sclerosis: effect on relapses. Neurology50, 398–402 (1998). ArticleCASPubMed Google Scholar
Sorensen, P. et al. Intravenous immunoglobulin G reduces MRI activity in relapsing multiple sclerosis. Neurology50, 1273–1281 (1998). ArticleCASPubMed Google Scholar
van den Noort, S. et al. National MS Society (NMSS): Disease Management Consensus Statement (National MS Society, New York, 1998). Google Scholar
Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. II. Predictive value of the early clinical course. Brain112, 1419–1428 (1989). ArticlePubMed Google Scholar
Noseworthy, J. in A Problem-oriented Approach to Management and Treatment of Multiple Sclerosis. (eds Thompson, A., Polman, C. & Hohlfeld, R.) 177–193 (Dunitz, London, 1997). Google Scholar
Noseworthy, J., O'Brien, P. and the Mayo Clinic-Canadian Cooperative MS Study Group. The Mayo Clinic Canadian Cooperative Trial of Sulfasalazine in active multiple sclerosis. Neurology51, 1342–1352 (1998). ArticleCASPubMed Google Scholar
van Noort, J. Multiple sclerosis: an altered immune response or an altered stress response? J. Mol. Med.74, 285–296 (1996). ArticleCASPubMed Google Scholar