MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation (original) (raw)
References
Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol.82, 358–370 (1981). ArticleCAS Google Scholar
Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature349, 588–593 (1991). ArticleADSCAS Google Scholar
Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature367, 467–470 (1994). ArticleADSCAS Google Scholar
Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature378, 292–295 (1995). ArticleADSCAS Google Scholar
Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res.299, 327–334 (2000). CASPubMed Google Scholar
Mannsfeldt, A. G., Carroll, P., Stucky, C. L. & Lewin, G. R. Stomatin, a MEC-2 like protein, is expressed by mammalian sensory neurons. Mol. Cell Neurosci.13, 391–404 (1999). ArticleCAS Google Scholar
Tavernarakis, N., Shreffler, W., Wang, S. & Driscol, M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron18, 107–119 (1997). ArticleCAS Google Scholar
Sedensky, M. M., Siefker, J. M. & Morgan, P. G. Model organisms: new insights into ion channel and transporter function. Stomatin homologues interact in Caenorhabditis elegans. Am. J. Physiol. Cell Physiol.280, C1340–C1348 (2001). ArticleCAS Google Scholar
Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science243, 1027–1033 (1989). ArticleADSCAS Google Scholar
García-Añoveros, J., Garcia, J. A., Liu, J. D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neurons20, 1231–1241 (1998). Article Google Scholar
Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol.140, 143–152 (1998). ArticleCAS Google Scholar
Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem.271, 10433–10436 (1996). ArticleCAS Google Scholar
Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature367, 463–467 (1994). ArticleADSCAS Google Scholar
Rajaram, S., Spangler, T. L., Sedensky, M. M. & Morgan, P. G. A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics153, 1673–1682 (1999). CASPubMedPubMed Central Google Scholar
Palmer, L. G. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. J. Membr. Biol.87, 191–199 (1985). ArticleCAS Google Scholar
McNicholas, C. M. & Canessa, C. M. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J. Gen. Physiol.109, 681–692 (1997). ArticleCAS Google Scholar
Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA93, 6577–6582 (1996). ArticleADSCAS Google Scholar
Muller, A. H., Gawantka, V., Ding, X. & Hausen, P. Maturation induced internalization of beta 1-integrin by Xenopus oocytes and formation of the maternal integrin pool. Mech. Dev.42, 77–88 (1993). ArticleCAS Google Scholar
Lande, W. M., Thiemann, P. V. & Mentzer, W. C. Jr Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J. Clin. Invest.70, 1273–1280 (1982). ArticleCAS Google Scholar
Huang, M. Mechanosensory genes in Caenorhabditis elegans. PhD thesis, Columbia Univ. (1995).
Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J. Biol. Chem.273, 17221–17226 (1998). ArticleCAS Google Scholar
Snyers, L., Umlaug, E. & Prohaska, R. Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett.449, 101–104 (1999). ArticleCAS Google Scholar
Salzer, U. & Prohaska, R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood97, 1141–1143 (2001). ArticleCAS Google Scholar
García-Añoveros, J., Samad, T. A., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaCl α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci.21, 2678–2686 (2001). Article Google Scholar
Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature407, 1007–1011 (2000). ArticleADSCAS Google Scholar
Lai, C. C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol.133, 1071–1081 (1996). ArticleCAS Google Scholar
Kleckner, N., Bender, J. & Gottesman, S. Uses of transposons with emphasis on Tn10. Methods Enzymol.204, 139–180 (1991). ArticleCAS Google Scholar
Hille, B. Ion Channels of Excitable Membranes. (Sinauer, Sunderland, Massachussetts, 2001). Google Scholar
Chillaron, J. et al. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J. Biol. Chem.272, 9543–9549 (1997). ArticleCAS Google Scholar
Woodhull, A. M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol.61, 687–708 (1973). ArticleCAS Google Scholar