MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation (original) (raw)

References

  1. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).
    Article CAS Google Scholar
  2. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991).
    Article ADS CAS Google Scholar
  3. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–470 (1994).
    Article ADS CAS Google Scholar
  4. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).
    Article ADS CAS Google Scholar
  5. Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res. 299, 327–334 (2000).
    CAS PubMed Google Scholar
  6. Mannsfeldt, A. G., Carroll, P., Stucky, C. L. & Lewin, G. R. Stomatin, a MEC-2 like protein, is expressed by mammalian sensory neurons. Mol. Cell Neurosci. 13, 391–404 (1999).
    Article CAS Google Scholar
  7. Tavernarakis, N., Shreffler, W., Wang, S. & Driscol, M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107–119 (1997).
    Article CAS Google Scholar
  8. Sedensky, M. M., Siefker, J. M. & Morgan, P. G. Model organisms: new insights into ion channel and transporter function. Stomatin homologues interact in Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 280, C1340–C1348 (2001).
    Article CAS Google Scholar
  9. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).
    Article ADS CAS Google Scholar
  10. García-Añoveros, J., Garcia, J. A., Liu, J. D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neurons 20, 1231–1241 (1998).
    Article Google Scholar
  11. Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143–152 (1998).
    Article CAS Google Scholar
  12. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10433–10436 (1996).
    Article CAS Google Scholar
  13. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467 (1994).
    Article ADS CAS Google Scholar
  14. Rajaram, S., Spangler, T. L., Sedensky, M. M. & Morgan, P. G. A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics 153, 1673–1682 (1999).
    CAS PubMed PubMed Central Google Scholar
  15. Palmer, L. G. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. J. Membr. Biol. 87, 191–199 (1985).
    Article CAS Google Scholar
  16. McNicholas, C. M. & Canessa, C. M. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J. Gen. Physiol. 109, 681–692 (1997).
    Article CAS Google Scholar
  17. Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 6577–6582 (1996).
    Article ADS CAS Google Scholar
  18. Muller, A. H., Gawantka, V., Ding, X. & Hausen, P. Maturation induced internalization of beta 1-integrin by Xenopus oocytes and formation of the maternal integrin pool. Mech. Dev. 42, 77–88 (1993).
    Article CAS Google Scholar
  19. Lande, W. M., Thiemann, P. V. & Mentzer, W. C. Jr Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J. Clin. Invest. 70, 1273–1280 (1982).
    Article CAS Google Scholar
  20. Huang, M. Mechanosensory genes in Caenorhabditis elegans. PhD thesis, Columbia Univ. (1995).
  21. Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J. Biol. Chem. 273, 17221–17226 (1998).
    Article CAS Google Scholar
  22. Snyers, L., Umlaug, E. & Prohaska, R. Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett. 449, 101–104 (1999).
    Article CAS Google Scholar
  23. Salzer, U. & Prohaska, R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97, 1141–1143 (2001).
    Article CAS Google Scholar
  24. García-Añoveros, J., Samad, T. A., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaCl α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).
    Article Google Scholar
  25. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).
    Article ADS CAS Google Scholar
  26. Lai, C. C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133, 1071–1081 (1996).
    Article CAS Google Scholar
  27. Kleckner, N., Bender, J. & Gottesman, S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204, 139–180 (1991).
    Article CAS Google Scholar
  28. Hille, B. Ion Channels of Excitable Membranes. (Sinauer, Sunderland, Massachussetts, 2001).
    Google Scholar
  29. Chillaron, J. et al. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J. Biol. Chem. 272, 9543–9549 (1997).
    Article CAS Google Scholar
  30. Woodhull, A. M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).
    Article CAS Google Scholar

Download references