New ideas about atrial fibrillation 50 years on (original) (raw)
Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death. The Framingham heart study. Circulation98, 946–952 (1998). ArticleCAS Google Scholar
Ho, K. K., Pinsky, J. L., Kannel, W. B. & Levy, D. The epidemiology of heart failure: the Framingham study. J. Am. Coll. Cardiol.22, 6A–13A (1993). ArticleCAS Google Scholar
Fenelon, G., Wijns, W., Andries, E. & Brugada, P. Tachycardiomyopathy: mechanisms and clinical implications. Pacing Clin. Electrophysiol.19, 95–106 (1996). ArticleCAS Google Scholar
Hart, R. G. & Halperin, J. L. Atrial fibrillation and stroke: concepts and controversies. Stroke32, 803–808 (2001). ArticleCAS Google Scholar
Nattel, S. Experimental evidence for proarrhythmic mechanisms of antiarrhythmic drugs. Cardiovasc. Res.37, 567–577 (1998). ArticleCAS Google Scholar
Nattel, S. Newer developments in the management of atrial fibrillation. Am. Heart J.130, 1094–1106 (1995). ArticleCAS Google Scholar
Garrey, W. E. Auricular fibrillation. Physiol. Rev.4, 215–250 (1924). Article Google Scholar
Cox, J. L. & Ad, N. New surgical and catheter-based modifications of the Maze procedure. Semin. Thorac. Cardiovasc. Surg.12, 68–73 (2000). ArticleCAS Google Scholar
Moe, G. K., Rheinboldt, W. C. & Abildskov, J. A. A computer model of atrial fibrillation. Am. Heart J.67, 200–220 (1964). ArticleCAS Google Scholar
Allessie, M. A., Bonke, F. I. & Schopman, F. J. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res.41, 9–18 (1977). ArticleCAS Google Scholar
Rensma, P. L., Allessie, M. A., Lammers, W. J., Bonke, F. I. & Schalij, M. J. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ. Res.62, 395–410 (1988). ArticleCAS Google Scholar
Mandapati, R., Skanes, A., Chen, J., Berenfeld, O. & Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation101, 194–199 (2000). ArticleCAS Google Scholar
Mansour, M. et al. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation103, 2631–2636 (2001). ArticleCAS Google Scholar
Morillo, C. A., Klein, G. J., Jones, D. L., Guiraudon, C. M. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation91, 1588–1595 (1995). ArticleCAS Google Scholar
Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med.339, 659–666 (1998). ArticleCAS Google Scholar
Li, D., Zhang, L., Kneller, J., Shi, H. & Nattel, S. Ionic mechanism of repolarization differences between canine right and left atrium. Circ. Res.88, 1168–1175 (2001). ArticleCAS Google Scholar
Derakhchan, K. et al. Method for simultaneous epicardial and endocardial mapping of the in vivo canine heart: application to atrial conduction properties and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol.12, 542–555 (2001). Article Google Scholar
Nattel, S., Li, D. & Yue, L. Basic mechanisms of atrial fibrillation- very new insights into very old ideas. Annu. Rev. Physiol.62, 51–77 (2000). ArticleCAS Google Scholar
Li, G.-R., Feng, J., Wang, Z., Fermini, B. & Nattel, S. Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circ. Res.78, 903–915 (1996). ArticleCAS Google Scholar
Wang, Z., Fermini, B. & Nattel, S. Sustained depolarization-induced outward current in human atrial myocytes: evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res.73, 1061–1076 (1993). ArticleCAS Google Scholar
Li, G.-R., Feng, J., Yue, L., Carrier, M. & Nattel, S. Evidence for two components of delayed rectifier potassium current in human ventricular myocytes. Circ. Res.78, 689–696 (1996). ArticleCAS Google Scholar
Feng, J., Wible, B., Li, G.-R., Wang, Z. & Nattel, S. Antisense oligonucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier potassium current in cultured adult human atrial myocytes. Circ. Res.80, 572–579 (1997). ArticleCAS Google Scholar
Wijffels, M. C. et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation92, 1954–1968 (1995). ArticleCAS Google Scholar
Wijffels, M. C., Kirchhof, C. J., Dorland, R., Power, J. & Allessie, M. A. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation96, 3710–3720 (1997). ArticleCAS Google Scholar
Sun, H., Chartier, D., Leblanc, N. & Nattel, S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc. Res.49, 751–761 (2001). ArticleCAS Google Scholar
Courtemanche, M., Ramirez, R. F. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol.275, H301–H321 (Heart Circ. Physiol. 44) (1998). CASPubMed Google Scholar
Yue, L. et al. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res.84, 776–784 (1999). ArticleCAS Google Scholar
Brundel, B. J. et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc. Res.42, 443–454 (1999). ArticleCAS Google Scholar
Lai, L.-P. et al. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, clasequestrin and phospholamban. An insight into the mechanism of atrial electrical remodeling. J. Am. Coll. Cardiol.33, 1231–1237 (1999). ArticleCAS Google Scholar
Yue, L. et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res.81, 512–525 (1997). ArticleCAS Google Scholar
Van Wagoner, D. R. et al. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res.85, 428–436 (1999). ArticleCAS Google Scholar
Bosch, R. F. et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc. Res.44, 121–131 (1999). ArticleCAS Google Scholar
Gaspo, R., Bosch, R. F., Talajic, M. & Nattel, S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation96, 4027–4035 (1997). ArticleCAS Google Scholar
Sun, H., Gaspo, R., Leblanc, N. & Nattel, S. The cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation98, 719–727 (1998). ArticleCAS Google Scholar
Ohkusa, T. et al. Alterations in cardiac sarcoplasmic reticulum Ca2+ regulatory proteins in the atrial tissue of patients with chronic atrial fibrillation. J. Am. Coll. Cardiol.34, 255–263 (1999). ArticleCAS Google Scholar
Ausma, J. et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation96, 3157–3163 (1997). ArticleCAS Google Scholar
Black, I. W. et al. Exclusion of atrial thrombus by transesophageal echocardiography does not preclude embolism after cardioversion of atrial fibrillation. A multicenter study. Circulation89, 2509–2513 (1994). ArticleCAS Google Scholar
Gaspo, R., Bosch, R. F., Bou-Abboud, E. & Nattel, S. Tachycardia-induced changes in sodium current in a chronic dog model of atrial fibrillation. Circ. Res.81, 1045–1052 (1997). ArticleCAS Google Scholar
Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S. & Nerbonne, J. M. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res.80, 772–781 (1997). ArticleCAS Google Scholar
Elvan, A., Huang, X. D., Pressler, M. L. & Zipes, D. P. Radiofrequency catheter ablation of the atrial eliminates pacing-induced sustained atrial fibrillation and reduces connexin43 in dogs. Circulation96, 1675–1685 (1997). ArticleCAS Google Scholar
van der Welden, H. M. W. et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc. Res.46, 476–486 (2000). Article Google Scholar
Dupont, E. et al. The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation103, 842–849 (2001). ArticleCAS Google Scholar
Li, D. et al. The effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation101, 2631–2638 (2000). ArticleCAS Google Scholar
Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation100, 87–95 (1999). ArticleCAS Google Scholar
Fenelon, G., Manders, T. & Stambler, B.S. Atrial tachycardia in dogs with ventricular pacing-induced congestive heart failure originates from multiple foci in the crista terminalis and pulmonary veins: experimental evidence supporting the “atrial ring of fire” hypothesis. Circulation96, I-237 (1999).
Goette, A. et al. Incresed expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol.35, 1669–1677 (2000). ArticleCAS Google Scholar
Goette, A. et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation101, 2678–2681 (2000). ArticleCAS Google Scholar
Lendeckel, U. et al. Expression and activity of ectopeptidases in fibrillating human atria. J. Mol. Cell. Cardiol.33, 1273–1281 (2001). ArticleCAS Google Scholar
Aime-Sempe, C. et al. Myocardial cell death in fibrillating and dilated human right atria. J. Am. Coll. Cardiol.34, 1577–1586 (1999). ArticleCAS Google Scholar
Li, D. et al. Effects of angiotensin converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation104, 2608–2614 (2001). ArticleCAS Google Scholar
Cardin, S., Li, D., Thorin, E., Leung, T. K. & Nattel, S. Role of apoptosis and tissue fibrosis in arrhythmogenic atrial structural remodeling in a canine model of congestive heart failure (abstract). Circulation104, II-77 (2001). Google Scholar
Pedersen, O. D., Bagger, H. Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation100, 376–380 (1999). ArticleCAS Google Scholar
Beyer, F., Paul, T., Luhmer, I., Bertram, H. & Kallfelz, H. C. Familiäres idiopathisches Vorhofflimmern mit Bradyarrhythmie. Z. Kardiol.82, 674–677 (1993). CASPubMed Google Scholar
Brugada, R. et al. Identification of a genetic locus for familial atrial fibrillation. N. Engl. J. Med.336, 905–911 (1997). ArticleCAS Google Scholar
Hagendorff, A. et al. Conduction disturbances and increased atrial vulnerability in connexin 40-deficient mice analyzed by transesophageal stimulation. Circulation99, 1508–1515 (1999). ArticleCAS Google Scholar
Sah, V.P. et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J. Clin. Invest.103, 1627–1634 (1999). ArticleCAS Google Scholar
Nakajima, H. et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-β1 transgene in the heart. Circ. Res.86, 571–579 (2000). ArticleCAS Google Scholar
Raiesdana*, A. et al. Inducibility of atrial arrhythmias in transgenic mice with selective atrial fibrosis die to overexpression of TGFβ-1. Pacing Clin. Electrophysiol.24, 549 (2001).
Yu, W. C. et al. Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs. Circulation97, 2331–2337 (1998). ArticleCAS Google Scholar
Daoud, E. G. et al. Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation96, 1542–1550 (1997). ArticleCAS Google Scholar
Tieleman, R. G. et al. Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation95, 1945–1953 (1997). ArticleCAS Google Scholar
Lee, S. H. et al. Effect of verapamil on long-term tachycardia-induced atrial electrical remodeling. Circulation101, 200–206 (2000). ArticleCAS Google Scholar
Fareh, S., Bénardeau, A. & Nattel, S. Differential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs. Cardiovasc. Res.49, 762–770 (2001). ArticleCAS Google Scholar
Fareh, S., Benardeau, A., Thibault, B. & Nattel S. The T-type Ca2+ channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation100, 2191–2197 (1999). ArticleCAS Google Scholar
Li, G.-R. & Nattel, S. Properties of transmembrane Ca2+ current at physiologic temperatures relevant to the action potential in human atrial myocytes. Am. J. Physiol.272, H227–H235 (Heart Circ. Physiol. 41) (1997). CASPubMed Google Scholar
Carnes, C. A. et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res.89, e32–e38 (2001).
Hobbs, W. J., Van Gelder, I. C., Fitzpatrick, A. P., Crijns, H. J. & Garratt, C. J. The role of atrial electrical remodeling in the progression of focal atrial ectopy to persistent atrial fibrillation. J. Cardiovasc. Electrophysiol.10, 866–870 (1999). ArticleCAS Google Scholar
Doshi, R. N. et al. Relation between ligament of Marshall and adrenergic atrial tachyarrhythmia. Circulation100, 876–883 (1999). ArticleCAS Google Scholar
Tsai, C. F. et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation102, 67–74 (2000). ArticleCAS Google Scholar
Wu, T. J. et al. Pulmonary veins and ligament of Marshall as sources of rapid activations in a canine model of sustained atrial fibrillation. Circulation103, 1157–1163 (2001). ArticleCAS Google Scholar
Kumagai, K. et al. Role of rapid focal activation in the maintenance of atrial fibrillation originating from the pulmonary veins. Pacing Clin. Electrophysiol.23, 1823–1827 (2000). ArticleCAS Google Scholar
Sueda, T. et al. Efficacy of pulmonary vein isolation for the elimination of chronic atrial fibrillation in cardiac valvular surgery. Ann. Thorac. Surg.71, 1189–1193 (2001). ArticleCAS Google Scholar
Cheung, D. W. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J. Physiol.314, 445–456 (1981). ArticleCAS Google Scholar
Chen, Y.-J., Chen, S.-A., Chang, M.-S. & Lin, C.-I. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc. Res.48, 265–273 (2000). ArticleCAS Google Scholar
Bode, F. et al. Tarantula peptide inhibits atrial fibrillation. Nature409, 35–36 (2001). ArticleADSCAS Google Scholar
Shi, W. et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ. Res.85, e1–e6 (1999). ArticleCAS Google Scholar
Beaumont, J., Davidenko, N., Davidenko J. M. & Jalife, J. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J.75, 1–14 (1998). ArticleADSCAS Google Scholar
Athill, C. A. et al. Transmembrane potential properties at the core of functional reentrant wave fronts in isolated canine right atria. Circulation98, 1556–1567 (1998). ArticleCAS Google Scholar
Kneller, J. & Nattel, S. How do class I antiarrhythmic drugs terminate atrial fibrillation? A quantitative analysis based on a realistic ionic model (abstract). Circulation104, II-5 (2001). Google Scholar
Wijffels, M. C. et al. Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation102, 260–267 (2000). ArticleCAS Google Scholar