Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation (original) (raw)
References
Pryer, N. K., Wuestehube, L. J. & Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem.61, 471–516 (1992). Google Scholar
Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature355, 33–45 (1992). ArticleADSCAS Google Scholar
Kopito, R. R. ER quality control: the cytoplasmic connection. Cell88, 427–430 (1997). Google Scholar
Biederer, T., Volkwein, C. & Sommer, T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J.15, 2069–2076 (1996). Google Scholar
Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science273, 1725–1728 (1996). Google Scholar
Werner, E. D., Brodsky, J. L. & McCracken, A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl Acad. Sci. USA93, 13797–13801 (1996). Google Scholar
Jensen, T. J.et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135 (1995). Google Scholar
Halaban, R.et al. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl Acad. Sci. USA94, 6210–6215 (1997). Google Scholar
Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol.10, 87–119 (1994). Google Scholar
Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem.65, 271–303 (1996). Google Scholar
Wiertz, E. J. H. J.et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996). ArticleADSCAS Google Scholar
Lyman, S. K. & Schekman, R. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell88, 85–96 (1997). Google Scholar
Finger, A., Knop, M. & Wolf, D. H. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur. J. Biochem.218, 565–574 (1993). Google Scholar
Stirling, C. S., Rothblatt, J., Hosobuchi, M., Deshaies, R. & Schekman, R. Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol. Cell. Biol.3, 129–142 (1992). Google Scholar
Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell81, 561–570 (1995). Google Scholar
Finke, K.et al. Asecond trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J.15, 1482–1494 (1996). Google Scholar
Feldheim, D., Rothblatt, J. & Schekman, R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol. Cell. Biol.12, 3288–3296 (1992). Google Scholar
Corsi, A. K. & Schekman, R. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol.137, 1483–1493 (1997). Google Scholar
Cyr, D. M., Langer, T. & Douglas, M. G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem. Sci.19, 176–181 (1994). Google Scholar
Hanein, D.et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell87, 721–732 (1996). Google Scholar
Scidmore, M. A., Okamura, H. H. & Rose, M. D. Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol. Biol. Cell4, 1145–1159 (1993). Google Scholar
Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D. & Schekman, R. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell69, 353–365 (1992). Google Scholar
Esnault, Y., Blondel, M. -O., Deshaies, R. J., Schekman, R. & Képès, F. The yeast SSS1 gene is essential for secretory protein translocation and encodes a conserved protein of the endoplasmic reticulum. EMBO J.12, 4083–4093 (1993). Google Scholar
Ng, D. T., Brown, J. D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol.134, 269–278 (1996). Google Scholar
Chen, P., Johnson, P., Sommer, T., Jentsch, S. & Hochstrasser, M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT α2 repressor. Cell74, 357–369 (1993). Google Scholar
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically requires for endoplasmic reticulum degradation in yeast. EMBO J.15, 753–763 (1996). Google Scholar
Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell7, 2029–2044 (1994). Google Scholar
Ausubel, F. M.et al. Current Protocols in Molecular Biology(Greene, New York, (1992)). Google Scholar
Rose, M. D., Misra, L. M. & Vogel, J. P. Kar2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell57, 1211–1221 (1989). Google Scholar