Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation (original) (raw)

References

  1. Pryer, N. K., Wuestehube, L. J. & Schekman, R. Vesicle-mediated protein sorting. Annu. Rev. Biochem. 61, 471–516 (1992).
    Google Scholar
  2. Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).
    Article ADS CAS Google Scholar
  3. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).
    Google Scholar
  4. Biederer, T., Volkwein, C. & Sommer, T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J. 15, 2069–2076 (1996).
    Google Scholar
  5. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).
    Google Scholar
  6. Werner, E. D., Brodsky, J. L. & McCracken, A. A. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl Acad. Sci. USA 93, 13797–13801 (1996).
    Google Scholar
  7. Jensen, T. J.et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).
    Google Scholar
  8. Halaban, R.et al. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc. Natl Acad. Sci. USA 94, 6210–6215 (1997).
    Google Scholar
  9. Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).
    Google Scholar
  10. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996).
    Google Scholar
  11. Wiertz, E. J. H. J.et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).
    Article ADS CAS Google Scholar
  12. Lyman, S. K. & Schekman, R. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88, 85–96 (1997).
    Google Scholar
  13. Finger, A., Knop, M. & Wolf, D. H. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur. J. Biochem. 218, 565–574 (1993).
    Google Scholar
  14. Stirling, C. S., Rothblatt, J., Hosobuchi, M., Deshaies, R. & Schekman, R. Protein translocation mutants defective in the insertion of integral membrane proteins into the endoplasmic reticulum. Mol. Cell. Biol. 3, 129–142 (1992).
    Google Scholar
  15. Panzner, S., Dreier, L., Hartmann, E., Kostka, S. & Rapoport, T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81, 561–570 (1995).
    Google Scholar
  16. Finke, K.et al. Asecond trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J. 15, 1482–1494 (1996).
    Google Scholar
  17. Feldheim, D., Rothblatt, J. & Schekman, R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol. Cell. Biol. 12, 3288–3296 (1992).
    Google Scholar
  18. Corsi, A. K. & Schekman, R. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae. J. Cell Biol. 137, 1483–1493 (1997).
    Google Scholar
  19. Cyr, D. M., Langer, T. & Douglas, M. G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem. Sci. 19, 176–181 (1994).
    Google Scholar
  20. Hanein, D.et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996).
    Google Scholar
  21. Scidmore, M. A., Okamura, H. H. & Rose, M. D. Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol. Biol. Cell 4, 1145–1159 (1993).
    Google Scholar
  22. Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D. & Schekman, R. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69, 353–365 (1992).
    Google Scholar
  23. Esnault, Y., Blondel, M. -O., Deshaies, R. J., Schekman, R. & Képès, F. The yeast SSS1 gene is essential for secretory protein translocation and encodes a conserved protein of the endoplasmic reticulum. EMBO J. 12, 4083–4093 (1993).
    Google Scholar
  24. Ng, D. T., Brown, J. D. & Walter, P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J. Cell Biol. 134, 269–278 (1996).
    Google Scholar
  25. Chen, P., Johnson, P., Sommer, T., Jentsch, S. & Hochstrasser, M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT α2 repressor. Cell 74, 357–369 (1993).
    Google Scholar
  26. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically requires for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).
    Google Scholar
  27. Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1994).
    Google Scholar
  28. Ausubel, F. M.et al. Current Protocols in Molecular Biology(Greene, New York, (1992)).
    Google Scholar
  29. Rose, M. D., Misra, L. M. & Vogel, J. P. Kar2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57, 1211–1221 (1989).
    Google Scholar

Download references