Double identity for proteins of the Bcl-2 family (original) (raw)

References

  1. Tsujimoto, Y. & Croce, C. M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl Acad. Sci. USA 83, 5214–5218 (1986).
    Article ADS CAS Google Scholar
  2. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).
    Article ADS CAS Google Scholar
  3. Baffy, G., Miyashita, T., Williamson, J. R. & Reed, J. C. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J. Biol. Chem. 268, 6511–6519 (1993).
    CAS PubMed Google Scholar
  4. Lam, M. et al. Evidence that Bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+fluxes. Proc. Natl Acad. Sci. USA 91, 6569–6573 (1994).
    Article ADS CAS Google Scholar
  5. Ryan, J. J. et al. c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc. Natl Acad. Sci. USA 91, 5878–5882 (1994).
    Article ADS CAS Google Scholar
  6. Minn, A. J. et al. Bcl-xLforms an ion channel in synthetic lipid membranes. Nature 385, 353–357 (1997).
    Article ADS CAS Google Scholar
  7. Schendel, S. L. et al. Channel formation by anti-apoptotic protein, Bcl-2. Proc. Natl Acad. Sci. USA 94, 5113–5118 (1997).
    Article ADS CAS Google Scholar
  8. Montal, M. Protein folds in channel structure. Curr. Opin. Struct. Biol. 6, 499–510 (1996).
    Article CAS Google Scholar
  9. Chen, J. et al. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc. Natl Acad. Sci. USA 93, 7042–7047 (1996).
    Article ADS CAS Google Scholar
  10. Middleton, G., Nunez, G. & Davies, A. M. Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 122, 695–701 (1996).
    CAS PubMed Google Scholar
  11. Kiefer, M. C. et al. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374, 736–739 (1995).
    Article ADS CAS Google Scholar
  12. Bernardi, P., Broekemeier, K. M. & Pfeiffer, D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerget. Biomembr. 26, 509–517 (1994).
    Article CAS Google Scholar
  13. Zoratti, M. & Szabo, I. Electrophysiology of the inner mitochondrial membrane. J. Bioenerget. Biomembr. 26, 543–553 (1996).
    Article Google Scholar
  14. Petit, P. X., Susin, S.-A., Zamzami, N., Mignotte, B. & Kroemer, G. Mitochondria and programmed cell death: back ot the future. FEBS Lett. 396, 7–13 (1996).
    Article CAS Google Scholar
  15. Susin, S. A. et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184, 1331–1342 (1996).
    Article CAS Google Scholar
  16. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).
    Article ADS CAS Google Scholar
  17. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).
    Article CAS Google Scholar
  18. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).
    Article CAS Google Scholar
  19. Häcker, G. & Vaux, D. L. Asticky business. Curr. Biol. 5, 622–624 (1995).
    Article Google Scholar
  20. Yuan, J. Y. & Horvitz, H. R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138, 33–41 (1990).
    Article CAS Google Scholar
  21. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578–591 (1996).
    Article CAS Google Scholar
  22. Spector, M. S., Desnoyers, S., Heoppner, D. J. & Hengartner, M. O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 275, 1122–1126 (1997).
    Google Scholar
  23. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122–1126 (1997).
    Article CAS Google Scholar
  24. Wu, D., Wallen, H. D. & Nunez, G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275, 1126–1129 (1997).
    Article CAS Google Scholar
  25. Shaham, S. & Horvitz, H. R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 (1996).
    Article CAS Google Scholar
  26. Wang, H. G., Rapp, U. R. & Reed, J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).
    Article CAS Google Scholar
  27. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3–3 not BCL-XL. Cell 87, 619–628 (1996).
    Article CAS Google Scholar
  28. Wang, H.-G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl Acad. Sci. USA 93, 7063–7068 (1996).
    Article ADS CAS Google Scholar
  29. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).
    Article CAS Google Scholar
  30. Diaz, J.-L. et al. Acommon binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J. Biol. Chem. 272, 11350–11355 (1997).
    Article CAS Google Scholar
  31. Shibasaki, F., Kondo, E., Akagi, T. & McKeon, F. Suppression of signalling through NF-AT by interactions between calcineurin and Bcl-2. Nature 386, 728–731 (1997).
    Article ADS CAS Google Scholar
  32. Shibasaki, F. & McKeon, F. Calcineurin functions in Ca2+-activated cell death in mammalian cells. J. Cell Biol. 131, 735–743 (1995).
    Article CAS Google Scholar
  33. Pietenpol, J. A. et al. Paradoxical inhibition of solid tumor cell growth by bcl-2. Cancer Res. 54, 3714–3717 (1994).
    CAS PubMed Google Scholar
  34. Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cel death and cell cycle progression: BCL-2 regulates NFAT-medicated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).
    Article ADS CAS Google Scholar
  35. Huang, D. C. S., O'Reilly, L. A., Strasser, & Cory, S. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J.(in the press).
  36. Haldar, S., Jena, N. & Croce, C. M. Inactivation of Bcl-2 by phosphorylation. Proc. Natl Acad. Sci. USA 92, 4507–4511 (1995).
    Article ADS CAS Google Scholar
  37. Chang, B. S., Minn, A. J., Muchmore, S. W., Fesik, S. W. & Thompson, C. B. Identification of a novel regulatory domain in Bcl-xLand Bcl-2. EMBO J. 16, 968–977 (1997).
    Article CAS Google Scholar
  38. Naumovski, L. & Cleary, M. L. The p53-binding protein 53BP2 also interacts with Bcl-2 and impedes cell cycle progression at G2/M. Mol. Cell. Biol. 16, 3884–3892 (1996).
    Article CAS Google Scholar
  39. Krajewski, S. et al. Investigations of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53, 4701–4714 (1993).
    CAS PubMed Google Scholar
  40. Kane, D. J., örd, T., Anton, R. & Bredesen, D. E. Expression of Bcl-2 inhibits necrotic neural cell death. J. Neurosci. Res. 40, 269–275 (1995).
    Article CAS Google Scholar

Download references