Polycystin-L is a calcium-regulated cation channel permeable to calcium ions (original) (raw)

References

  1. Gabow,P. A., Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 329, 332–342 (1993).
    Article CAS Google Scholar
  2. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).
    Article Google Scholar
  3. The International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81, 289–298 (1995).
    Article Google Scholar
  4. Hughes,J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genet. 10, 151–160 (1995).
    Article CAS Google Scholar
  5. Mochizuki,T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).
    Article ADS CAS Google Scholar
  6. Nomura,H. et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J. Biol. Chem. 273, 25967–24973 (1998).
    Article CAS Google Scholar
  7. Wu,G. et al. Identification of PDK2L, a human PKD2-related gene: tissue-specific expression and mapping to chromosome 10q25. Genomics 54, 564–568 (1998).
    Article CAS Google Scholar
  8. Kiselyov,K. et al. Functional interaction between InspP3 receptors and store-operated Htrp3 channels. Nature 396, 478–482 (1998).
    Article ADS CAS Google Scholar
  9. Perez-Reyes,E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896–900 (1998).
    Article ADS CAS Google Scholar
  10. Xia,X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).
    Article ADS CAS Google Scholar
  11. Jorgensen,A. J., Bennekou,P., Eskesen,K. & Kristensen,B. I. Annexins from Ehrlich ascites cells inhibit the calcium-activated chloride current in Xenopus laevis oocytes. Pflugers Arch. 434, 261–266 (1997).
    Article CAS Google Scholar
  12. Boton,R., Dascal,N., Gillo,B. & Lass,Y. Two calcium-activated chloride conductances in Xenopus laevis oocytes permeabilized with the ionophore A23187. J. Physiol. (Lond.) 408, 511–534 (1989).
    Article CAS Google Scholar
  13. Zitt,C. et al. Expression of TRPC3 in Chinese hamster ovary cells results in calcium-activated cation currents not related to store depletion. J. Cell Biol. 138, 1333–1341 (1997).
    Article CAS Google Scholar
  14. Zuhlke,R. D. & Reuter,H. Ca2+-sensitive desensitization of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the α1C subunit. Proc. Natl Acad. Sci. USA 95, 3287–3294 (1998).
    Article ADS CAS Google Scholar
  15. Gogelein,H., Dahlem,D., Englert,H. C. & Lang,H. J. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancrease. FEBS Lett. 268, 79–82 (1990).
    Article CAS Google Scholar
  16. Kunze,D. L., Sinkins,W. G., Vaca,L. & Schilling,W. P. Properties of single Drosophila Trp1 channels expressed in Sf9 insect cells. Am. J. Physiol. 272, C27–C34 (1997).
    Article CAS Google Scholar
  17. Gillo,B. et al. Coexpression of Drosophila TRP and TRP-like proteins in Xenopus oocytes reconstitutes capacitative Ca2+ entry. Proc. Natl Acad. Sci. USA 93, 14146–14151 (1996).
    Article ADS CAS Google Scholar
  18. Caterina,M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).
    Article ADS CAS Google Scholar
  19. Birnbaumer,L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for TRP proteins. Proc. Natl Acad. Sci. USA 93, 15195–15202 (1996).
    Article ADS CAS Google Scholar
  20. Yang,X. C. & Sachs,F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071 (1989).
    Article ADS CAS Google Scholar
  21. Lane,J. W., McBride, D. W. Jr & Hamill,O. P. Ionic effects on amiloride block of the mechanosensitive channel in Xenopus oocytes. Br. J. Pharmacol. 108, 116–119 (1993).
    Article CAS Google Scholar
  22. Tzounopoulos,T., Maylie,J. & Adelman,J. P. Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus oocytes. Biophys. J. 69, 904–908 (1995).
    Article ADS CAS Google Scholar
  23. Sullivan,L. P., Wallace,D. P. & Grantham,J. J. Chloride and fluid secretion in polycystic kidney disease. J. Am. Soc. Nephrol. 9, 903–916 (1998).
    CAS PubMed Google Scholar
  24. Tsiokas,L., Kim,E., Arnould,T., Sukhatme,V. P. & Walz,G. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl Acad. Sci. USA 94, 6965–6970 (1997).
    Article ADS CAS Google Scholar
  25. Qian,F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nature Genet. 16, 179–183 (1997).
    Article CAS Google Scholar
  26. Saadi,I. et al. Molecular genetics of cystinuiria: mutation analysis of SLC3A1 and evidence for another gene in type I (silent) phenotype. Kidney Int. 54, 48–55 (1998).
    Article CAS Google Scholar
  27. Chen, X.-Z., Shayakul,C., Berger,U. V., Tian,W. & Hediger,M. A. Characterization of a rat Na+-dicarboxylate cotransporter. J. Biol. Chem. 273, 20972–20981 (1998).
    Article Google Scholar
  28. Hille,B. in Ionic Channels of Excitable Membranes (ed. Hille, B.) 105–108 (Sinauer, Sunderland, Massachusetts, 1992).
    Google Scholar
  29. Hamill,O. P., Marty,A., Neher,E., Sakmann,B. & Sigworth,F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).
    Article CAS Google Scholar
  30. Chen, X.-Z., Zhu,T., Smith,D. E. & Hedliger,M. A. Stoichiometry and kinetics of the rat high-affinity H+-coupled peptide transporter PepT2. J. Biol. Chem. 274, 2773–2779 (1999).
    Article Google Scholar

Download references