Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 (original) (raw)

References

  1. Kondo,M., Weissman,I. L. & Akashi,K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).
    Article CAS Google Scholar
  2. Hardy,R. R., Carmack,C. E., Shinton,S. A., Kemp,J. D. & Kayakawa,K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).
    Article CAS Google Scholar
  3. Rolink,A., Grawunder,U., Winkler,T. H., Karasuyama,H. & Melchers,F. IL-2 receptor α chain (CD25,TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264 (1994).
    Article CAS Google Scholar
  4. Rolink,A., Kudo,A., Karasuyama,H., Kikuchi,Y. & Melchers,F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen rective B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).
    Article CAS Google Scholar
  5. Thévenin,C., Nutt,S. L. & Busslinger,M. Early function of Pax5 (BSAP) prior to the pre-B cell receptor stage of B lymphopoiesis. J. Exp. Med. 188, 735–744 (1998).
    Article Google Scholar
  6. Zhuang,Y., Soriano,P. & Weintraub,H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).
    Article CAS Google Scholar
  7. Bain,G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).
    Article CAS Google Scholar
  8. Lin,H. & Grosschedl,R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).
    Article ADS CAS Google Scholar
  9. Sigvardsson,M., O'Riordan,M. & Grosschedl,R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7, 25–36 (1997).
    Article CAS Google Scholar
  10. Kee,B. L. & Murre,C. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188, 699–713 (1998).
    Article CAS Google Scholar
  11. Busslinger,M. & Nutt,S. L. in Molecular Biology of B-Cell and T-Cell Development (eds Monroe, J. G. & Rothenberg, E. V.) 83–110 (Humana, Totowa, New Jersey, 1998).
    Book Google Scholar
  12. Adams,B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 6, 1589–1607 (1992).
    Article CAS Google Scholar
  13. Li, Y.-S., Wasserman,R., Hayakawa,K. & Hardy,R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).
    Article Google Scholar
  14. Urbánek,P., Wang, Z.-Q., Fetka,I., Wagner,E. F. & Busslinger,M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).
    Article Google Scholar
  15. Nutt,S. L., Urbánek,P., Rolink,A. & Busslinger,M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced _V_-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).
    Article CAS Google Scholar
  16. Nutt,S. L., Morrison,A. M., Dörfler,P., Rolink,A. & Busslinger,M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).
    Article CAS Google Scholar
  17. Shinkai,Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).
    Article CAS Google Scholar
  18. Rolink,A., Melchers,F. & Andersson,J. The SCID but not the RAG-2 gene product is required for Sµ-Sε heavy chain class switching. Immunity 5, 319–330 (1996).
    Article CAS Google Scholar
  19. Yamane,T. et al. Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood 90, 3516–3523 (1997).
    CAS PubMed Google Scholar
  20. Inaba,K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).
    Article CAS Google Scholar
  21. Branchereau,J. & Steinman,R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).
    Article ADS Google Scholar
  22. Kong, Y.-Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).
    Article ADS Google Scholar
  23. Liu,F., Poursine-Laurent,J., Wu,H. Y. & Link,D. C. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood 90, 2583–2590 (1997).
    CAS PubMed Google Scholar
  24. Ogasawara,K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).
    Article ADS CAS Google Scholar
  25. Rolink,A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).
    Article CAS Google Scholar
  26. Raulet,D. H. Development and tolerance of natural killer cells. Curr. Opin. Immunol. 11, 129–134 (1999).
    Article CAS Google Scholar
  27. Liao, N.-S., Bix,M., Zijlstra,M., Jaenisch,R. & Raulet,D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 253, 199–202 (1991).
    Article ADS Google Scholar
  28. Rolink,A. G., Nutt,S. L., Melchers,F. & Busslinger,M. Long-term in vivo reconstitution of T cell development by Pax5-deficient B cell progenitors. Nature 401, 603–606 (1999).
    Article ADS CAS Google Scholar
  29. Wang, Z.-Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745 (1992).
    Article ADS Google Scholar
  30. Grigoriadis,A. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).
    Article ADS CAS Google Scholar
  31. Hu,M. et al. Multilineage gene expression precedes commitment in the hematopoietic system. Genes Dev. 11, 774–785 (1997).
    Article CAS Google Scholar
  32. Borrello,M. A. & Phipps,R. P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today 17, 471–475 (1996).
    Article CAS Google Scholar
  33. Akashi,K. et al. Simultaneous occurrence of myelomonocytic leukemia and multiple myeloma: involvement of common leukemic progenitors and their developmental abnormality of “lineage infidelity”. J. Cell Physiol. 148, 446–456 (1991).
    Article CAS Google Scholar
  34. Klinken,S. P., Alexander,W. S. & Adams,J. M. Hematopoietic lineage switch: v-raf oncogene converts Eµ-myc transgenic B cells into macrophages. Cell 53, 857–867 (1988).
    Article CAS Google Scholar
  35. Strasser,A., Elefanty,A. G., Harris,A. W. & Cory,S. Progenitor tumours from Eµ-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cells survival. EMBO J. 15, 3823–3824 (1996).
    Article CAS Google Scholar
  36. Davidson,W. F., Pierce,J. H., Rudikoff,S. & Morse III,H. C. Relationships between B cell and myeloid differentiation: studies with a B lymphocyte progenitor line, HAFTL-1. J. Exp. Med. 168, 389–407 (1988).
    Article CAS Google Scholar
  37. Principato,M. et al. Transformation of murine bone marrow cells with combined v-_raf-_v-myc oncogenes yields clonally related mature B cells and macrophages. Mol. Cell. Biol. 10, 3562–3568 (1990).
    Article CAS Google Scholar
  38. Borzillo,G. V., Ashmun,R. A. & Sherr,C. J. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol. Cell. Biol. 10, 2703–2714 (1990).
    Article CAS Google Scholar
  39. Cumano,A., Paige,C. J., Iscove,N. N. & Brady,G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356, 612–615 (1992).
    Article ADS CAS Google Scholar
  40. Kawamoto,H., Ohmura,K. & Katsura,Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int. Immunol. 9, 1011–1019 (1997).
    Article CAS Google Scholar
  41. Aiba,Y. & Ogawa,M. Development of natural killer cells, B lymphocytes, macrophages, and mast cells from single hematopoietic progenitors in culture of murine fetal liver cells. Blood 90, 3923–3930 (1997).
    CAS PubMed Google Scholar
  42. Lacaud,G., Carlsson,L. & Keller,G. Identification of a fetal hematopoietic precursor with B cell, T cell, and macrophage potential. Immunity 9, 827–838 (1998).
    Article CAS Google Scholar
  43. Galy,A., Travis,M., Cen,D. & Chen,B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).
    Article CAS Google Scholar
  44. van Freeden-Jeffry,U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).
    Article Google Scholar
  45. Enver,T. & Greaves,M. Loops, lineages, and leukemia. Cell 94, 9–12 (1998).
    Article CAS Google Scholar
  46. Åkerblad,P., Rosberg,M., Leanderson,T. & Sigvardsson,M. The B29 (immunoglobulin β-chain) gene is a genetic target for early B-cell factor. Mol. Cell. Biol. 19, 392–401 (1999).
    Article Google Scholar
  47. Metcalf,D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92, 345–348 (1998).
    CAS PubMed Google Scholar
  48. Enver,T., Heyworth,C. M. & Dexter,T. M. Do stem cells play dice? Blood 92, 348–351 (1998).
    CAS Google Scholar
  49. Nutt,S. L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nature Genet. 21, 390–395 (1999).
    Article CAS Google Scholar
  50. Karasuyama,H. & Melchers,F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 and 5, using modified cDNA expression vectors. Eur. J. Immunol. 18, 97–104 (1988).
    Article CAS Google Scholar

Download references