Commitment to the B-lymphoid lineage depends on the transcription factor Pax5 (original) (raw)
References
Kondo,M., Weissman,I. L. & Akashi,K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCAS Google Scholar
Hardy,R. R., Carmack,C. E., Shinton,S. A., Kemp,J. D. & Kayakawa,K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med.173, 1213–1225 (1991). ArticleCAS Google Scholar
Rolink,A., Grawunder,U., Winkler,T. H., Karasuyama,H. & Melchers,F. IL-2 receptor α chain (CD25,TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol.6, 1257–1264 (1994). ArticleCAS Google Scholar
Rolink,A., Kudo,A., Karasuyama,H., Kikuchi,Y. & Melchers,F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen rective B cells in vitro and in vivo. EMBO J.10, 327–336 (1991). ArticleCAS Google Scholar
Thévenin,C., Nutt,S. L. & Busslinger,M. Early function of Pax5 (BSAP) prior to the pre-B cell receptor stage of B lymphopoiesis. J. Exp. Med.188, 735–744 (1998). Article Google Scholar
Zhuang,Y., Soriano,P. & Weintraub,H. The helix-loop-helix gene E2A is required for B cell formation. Cell79, 875–884 (1994). ArticleCAS Google Scholar
Bain,G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell79, 885–892 (1994). ArticleCAS Google Scholar
Lin,H. & Grosschedl,R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature376, 263–267 (1995). ArticleADSCAS Google Scholar
Sigvardsson,M., O'Riordan,M. & Grosschedl,R. EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity7, 25–36 (1997). ArticleCAS Google Scholar
Kee,B. L. & Murre,C. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med.188, 699–713 (1998). ArticleCAS Google Scholar
Busslinger,M. & Nutt,S. L. in Molecular Biology of B-Cell and T-Cell Development (eds Monroe, J. G. & Rothenberg, E. V.) 83–110 (Humana, Totowa, New Jersey, 1998). Book Google Scholar
Adams,B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev.6, 1589–1607 (1992). ArticleCAS Google Scholar
Li, Y.-S., Wasserman,R., Hayakawa,K. & Hardy,R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity5, 527–535 (1996). Article Google Scholar
Urbánek,P., Wang, Z.-Q., Fetka,I., Wagner,E. F. & Busslinger,M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell79, 901–912 (1994). Article Google Scholar
Nutt,S. L., Urbánek,P., Rolink,A. & Busslinger,M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced _V_-to-DJ recombination at the IgH locus. Genes Dev.11, 476–491 (1997). ArticleCAS Google Scholar
Nutt,S. L., Morrison,A. M., Dörfler,P., Rolink,A. & Busslinger,M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J.17, 2319–2333 (1998). ArticleCAS Google Scholar
Shinkai,Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCAS Google Scholar
Rolink,A., Melchers,F. & Andersson,J. The SCID but not the RAG-2 gene product is required for Sµ-Sε heavy chain class switching. Immunity5, 319–330 (1996). ArticleCAS Google Scholar
Yamane,T. et al. Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood90, 3516–3523 (1997). CASPubMed Google Scholar
Inaba,K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCAS Google Scholar
Branchereau,J. & Steinman,R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleADS Google Scholar
Kong, Y.-Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature397, 315–323 (1999). ArticleADS Google Scholar
Liu,F., Poursine-Laurent,J., Wu,H. Y. & Link,D. C. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood90, 2583–2590 (1997). CASPubMed Google Scholar
Ogasawara,K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature391, 700–703 (1998). ArticleADSCAS Google Scholar
Rolink,A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med.183, 187–194 (1996). ArticleCAS Google Scholar
Raulet,D. H. Development and tolerance of natural killer cells. Curr. Opin. Immunol.11, 129–134 (1999). ArticleCAS Google Scholar
Liao, N.-S., Bix,M., Zijlstra,M., Jaenisch,R. & Raulet,D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science253, 199–202 (1991). ArticleADS Google Scholar
Rolink,A. G., Nutt,S. L., Melchers,F. & Busslinger,M. Long-term in vivo reconstitution of T cell development by Pax5-deficient B cell progenitors. Nature401, 603–606 (1999). ArticleADSCAS Google Scholar
Wang, Z.-Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature360, 741–745 (1992). ArticleADS Google Scholar
Grigoriadis,A. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science266, 443–448 (1994). ArticleADSCAS Google Scholar
Hu,M. et al. Multilineage gene expression precedes commitment in the hematopoietic system. Genes Dev.11, 774–785 (1997). ArticleCAS Google Scholar
Borrello,M. A. & Phipps,R. P. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol. Today17, 471–475 (1996). ArticleCAS Google Scholar
Akashi,K. et al. Simultaneous occurrence of myelomonocytic leukemia and multiple myeloma: involvement of common leukemic progenitors and their developmental abnormality of “lineage infidelity”. J. Cell Physiol.148, 446–456 (1991). ArticleCAS Google Scholar
Klinken,S. P., Alexander,W. S. & Adams,J. M. Hematopoietic lineage switch: v-raf oncogene converts Eµ-myc transgenic B cells into macrophages. Cell53, 857–867 (1988). ArticleCAS Google Scholar
Strasser,A., Elefanty,A. G., Harris,A. W. & Cory,S. Progenitor tumours from Eµ-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cells survival. EMBO J.15, 3823–3824 (1996). ArticleCAS Google Scholar
Davidson,W. F., Pierce,J. H., Rudikoff,S. & Morse III,H. C. Relationships between B cell and myeloid differentiation: studies with a B lymphocyte progenitor line, HAFTL-1. J. Exp. Med.168, 389–407 (1988). ArticleCAS Google Scholar
Principato,M. et al. Transformation of murine bone marrow cells with combined v-_raf-_v-myc oncogenes yields clonally related mature B cells and macrophages. Mol. Cell. Biol.10, 3562–3568 (1990). ArticleCAS Google Scholar
Borzillo,G. V., Ashmun,R. A. & Sherr,C. J. Macrophage lineage switching of murine early pre-B lymphoid cells expressing transduced fms genes. Mol. Cell. Biol.10, 2703–2714 (1990). ArticleCAS Google Scholar
Cumano,A., Paige,C. J., Iscove,N. N. & Brady,G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature356, 612–615 (1992). ArticleADSCAS Google Scholar
Kawamoto,H., Ohmura,K. & Katsura,Y. Direct evidence for the commitment of hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver. Int. Immunol.9, 1011–1019 (1997). ArticleCAS Google Scholar
Aiba,Y. & Ogawa,M. Development of natural killer cells, B lymphocytes, macrophages, and mast cells from single hematopoietic progenitors in culture of murine fetal liver cells. Blood90, 3923–3930 (1997). CASPubMed Google Scholar
Lacaud,G., Carlsson,L. & Keller,G. Identification of a fetal hematopoietic precursor with B cell, T cell, and macrophage potential. Immunity9, 827–838 (1998). ArticleCAS Google Scholar
Galy,A., Travis,M., Cen,D. & Chen,B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity3, 459–473 (1995). ArticleCAS Google Scholar
van Freeden-Jeffry,U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med.181, 1519–1526 (1995). Article Google Scholar
Åkerblad,P., Rosberg,M., Leanderson,T. & Sigvardsson,M. The B29 (immunoglobulin β-chain) gene is a genetic target for early B-cell factor. Mol. Cell. Biol.19, 392–401 (1999). Article Google Scholar
Metcalf,D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood92, 345–348 (1998). CASPubMed Google Scholar
Enver,T., Heyworth,C. M. & Dexter,T. M. Do stem cells play dice? Blood92, 348–351 (1998). CAS Google Scholar
Nutt,S. L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nature Genet.21, 390–395 (1999). ArticleCAS Google Scholar
Karasuyama,H. & Melchers,F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 and 5, using modified cDNA expression vectors. Eur. J. Immunol.18, 97–104 (1988). ArticleCAS Google Scholar