Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo (original) (raw)
References
Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature367, 69–72 (1994). ArticleCAS Google Scholar
Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron16, 701–716 (1996). ArticleCAS Google Scholar
Jaffe, D. B. et al. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature357, 244–246 (1992). ArticleCAS Google Scholar
Magee, J. C. & Johnston, D. Synaptic activation of voltage–gated channels in the dendrites of hippocampal pyramidal neurons. Science268, 301–304 (1995). ArticleCAS Google Scholar
Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature375, 682–684 (1995). ArticleCAS Google Scholar
Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian synaptic plasticity in hippocampal neurons. Science275, 209–213 (1997). ArticleCAS Google Scholar
Markram, H., Luebke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science275, 213–215 (1997). ArticleCAS Google Scholar
Turner, R. W., Meyers, E. R., Richardson, D. L. & Barker, J. L. The site of initiation of action potential discharge over the somatosensory axis of rat hippocampal CA1 neurons. J. Neurosci.11, 2270–2280 (1991). ArticleCAS Google Scholar
Cauller, L. J. & Connors, B. W. in Single Neuron Computation (eds McKenna, T., Davis, J. & Zornetzer, S. F.) 199–229 (Academic, New York, 1992). Book Google Scholar
Kim, H. G. & Connors, B. W. Apical dendrites of the neocortex: correlation between sodium– and calcium–dependent spiking and pyramidal cell morphology. J. Neurosci.13, 5301–5311 (1993). ArticleCAS Google Scholar
Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action–potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.)505, 605–616 (1997). ArticleCAS Google Scholar
Tsubokawa, H. & Ross, W. N. Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci.17, 5782–5791 (1997). ArticleCAS Google Scholar
Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+] changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol.76, 2896–2906 (1996). ArticleCAS Google Scholar
Kim, H. G., Beierlein, M. & Connors, B. W. Inhibitory control of excitable dendrites in neocortex. J. Neurophysiol.74, 1810–1814 (1995). ArticleCAS Google Scholar
Andreasen, M. & Lambert, J. D. C. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J. Physiol. (Lond.)483, 421–441 (1995). ArticleCAS Google Scholar
Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature287, 869–875 (1997). Article Google Scholar
Jung, H. Y., Mickus, T. & Spruston, N. Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci.17, 6639–6646 (1997). ArticleCAS Google Scholar
Colbert, C. M., Magee, J. C., Hoffman, D. A. & Johnston, D. Slow recovery from inactivation of Na+ channels underlies activity–dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurophysiol.17, 6512–6521 (1997). CAS Google Scholar
Pare, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E. J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol.79, 1450–1460 (1998). ArticleCAS Google Scholar
Pare, D., Lang, E. J. & Destexhe, A. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study. Neuroscience84, 377–402 (1998). ArticleCAS Google Scholar
Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci.18, 3919–3928 (1998). ArticleCAS Google Scholar
Denk, W., Strickler, J. H. & Webb, W. W. Two–photon laser scanning microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar
Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature385, 161–165 (1997). ArticleCAS Google Scholar
Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron18, 351–357 (1997). ArticleCAS Google Scholar
Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential–evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J.70, 1069–1081 (1996). ArticleCAS Google Scholar
Muller, W. & Connor, J. A. Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons. Neuron6, 901–905 (1991). ArticleCAS Google Scholar
Juliano, S. L. & Jacobs, S. E. in The Barrel Cortex of Rodents (eds Jones, E. G. & Diamond, I. T.) 411–430 (Plenum, New York, 1995). Book Google Scholar
Buzsaki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci.8, 4007–4026 (1988). ArticleCAS Google Scholar
Winkler, J., Suhr, S., Gage, F., Thal, L. & Fisher, L. Essential role of neocortical acetylcholine in spatial memory. Nature375, 484–487 (1995). ArticleCAS Google Scholar
Moruzzi, G. & Magoun, H. W. Brainstem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol.1, 455–473 (1949). ArticleCAS Google Scholar
Detari, L. & Vanderwolf, C. H. Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anesthetized rats. Brain Res.437, 1–8 (1987). ArticleCAS Google Scholar
Mullin, W. J. The effect of graded forelimb afferent volleys on acetylcholine release from cat sensorimotor cortex. J. Physiol. (Lond.)244, 741–756 (1975). ArticleCAS Google Scholar
Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci.13, 99–104 (1990). ArticleCAS Google Scholar
Cowan, R. L. & Wilson, C. J. Spontaneous firing pattern and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol.71, 17–32 (1994). ArticleCAS Google Scholar
Contreras, D. & Steriade, M. Synchronyzation of low frequency rhythms in corticothalamic networks. Neuroscience76, 11–24 (1997). ArticleCAS Google Scholar
Crevier, D. W. & Meister, M. Synchronous period–doubling in flicker vision of salamander and man. J. Neurophysiol.79, 1869–1878 (1998). ArticleCAS Google Scholar
White, E. L. Cortical Circuits (Birkhauser, Boston, 1989). Book Google Scholar
Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.)505, 617–632 (1997). ArticleCAS Google Scholar
Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA93, 11985–11990 (1996). ArticleCAS Google Scholar
Mainen, Z. F., Joerges, J., Hugenard, J. R. & Sejnowski, T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron15, 1427–1439 (1995). ArticleCAS Google Scholar
Callaway, J. C. & Ross, W. N. Frequency–dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol.74, 1395–1403 (1995). ArticleCAS Google Scholar
Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity–dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science268, 297–300 (1995). ArticleCAS Google Scholar
Andreasen, M. & Hablitz, J. J. Local anesthetics block transient outward potassium currents in rat neocortical neurons. J. Neurophysiol.69, 1966–1975 (1993). ArticleCAS Google Scholar
Metherate, R., Cox, C. L. & Ashe, J. H. Cellular basis of neocortical activation: modulation of neural oscillations by the nucleus basalis and endegenous acetylcholine. J. Neurosci.12, 4701–4711 (1992). ArticleCAS Google Scholar
Bakin, J. S. & Weinberger, N. M. Induction of a physiological memory in the cerebral cortex by stimulation of the neucleus basalis. Proc. Natl. Acad. Sci. USA93, 11219–11224 (1996). ArticleCAS Google Scholar
Kilgard, M. P. & Merzenich, M. M. Cortical map organization enabled by nucleus basalis activity. Science279, 1714–1718 (1998). ArticleCAS Google Scholar
McCormick, D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progr. Neurobiol.29, 337–388 (1992). Article Google Scholar
Holscher, C., Anwyl, R. & Rowan, M. J. Stimulation on the positive phase of hippocampal theta rhythm induces long–term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J. Neurosci.17, 6470–6477 (1997). ArticleCAS Google Scholar
Sloan, T. B. Anesthetic effects on electrophysiologic recordings. J. Clin. Neurophysiol.15, 217–226 (1998). ArticleCAS Google Scholar
Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods25, 1–11 (1988). ArticleCAS Google Scholar