Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo (original) (raw)

References

  1. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
    Article CAS Google Scholar
  2. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).
    Article CAS Google Scholar
  3. Jaffe, D. B. et al. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357, 244–246 (1992).
    Article CAS Google Scholar
  4. Magee, J. C. & Johnston, D. Synaptic activation of voltage–gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).
    Article CAS Google Scholar
  5. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).
    Article CAS Google Scholar
  6. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian synaptic plasticity in hippocampal neurons. Science 275, 209–213 (1997).
    Article CAS Google Scholar
  7. Markram, H., Luebke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
    Article CAS Google Scholar
  8. Turner, R. W., Meyers, E. R., Richardson, D. L. & Barker, J. L. The site of initiation of action potential discharge over the somatosensory axis of rat hippocampal CA1 neurons. J. Neurosci. 11, 2270–2280 (1991).
    Article CAS Google Scholar
  9. Cauller, L. J. & Connors, B. W. in Single Neuron Computation (eds McKenna, T., Davis, J. & Zornetzer, S. F.) 199–229 (Academic, New York, 1992).
    Book Google Scholar
  10. Kim, H. G. & Connors, B. W. Apical dendrites of the neocortex: correlation between sodium– and calcium–dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993).
    Article CAS Google Scholar
  11. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action–potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 605–616 (1997).
    Article CAS Google Scholar
  12. Tsubokawa, H. & Ross, W. N. Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J. Neurosci. 17, 5782–5791 (1997).
    Article CAS Google Scholar
  13. Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+] changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1996).
    Article CAS Google Scholar
  14. Kim, H. G., Beierlein, M. & Connors, B. W. Inhibitory control of excitable dendrites in neocortex. J. Neurophysiol. 74, 1810–1814 (1995).
    Article CAS Google Scholar
  15. Andreasen, M. & Lambert, J. D. C. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 483, 421–441 (1995).
    Article CAS Google Scholar
  16. Hoffman, D. A., Magee, J. C., Colbert, C. M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 287, 869–875 (1997).
    Article Google Scholar
  17. Jung, H. Y., Mickus, T. & Spruston, N. Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci. 17, 6639–6646 (1997).
    Article CAS Google Scholar
  18. Colbert, C. M., Magee, J. C., Hoffman, D. A. & Johnston, D. Slow recovery from inactivation of Na+ channels underlies activity–dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 17, 6512–6521 (1997).
    CAS Google Scholar
  19. Pare, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E. J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79, 1450–1460 (1998).
    Article CAS Google Scholar
  20. Pare, D., Lang, E. J. & Destexhe, A. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study. Neuroscience 84, 377–402 (1998).
    Article CAS Google Scholar
  21. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).
    Article CAS Google Scholar
  22. Denk, W., Strickler, J. H. & Webb, W. W. Two–photon laser scanning microscopy. Science 248, 73–76 (1990).
    Article CAS Google Scholar
  23. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).
    Article CAS Google Scholar
  24. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).
    Article CAS Google Scholar
  25. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential–evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).
    Article CAS Google Scholar
  26. Muller, W. & Connor, J. A. Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies intradendritic Ca2+ changes in hippocampal neurons. Neuron 6, 901–905 (1991).
    Article CAS Google Scholar
  27. Juliano, S. L. & Jacobs, S. E. in The Barrel Cortex of Rodents (eds Jones, E. G. & Diamond, I. T.) 411–430 (Plenum, New York, 1995).
    Book Google Scholar
  28. Buzsaki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8, 4007–4026 (1988).
    Article CAS Google Scholar
  29. Winkler, J., Suhr, S., Gage, F., Thal, L. & Fisher, L. Essential role of neocortical acetylcholine in spatial memory. Nature 375, 484–487 (1995).
    Article CAS Google Scholar
  30. Moruzzi, G. & Magoun, H. W. Brainstem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473 (1949).
    Article CAS Google Scholar
  31. Detari, L. & Vanderwolf, C. H. Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anesthetized rats. Brain Res. 437, 1–8 (1987).
    Article CAS Google Scholar
  32. Mullin, W. J. The effect of graded forelimb afferent volleys on acetylcholine release from cat sensorimotor cortex. J. Physiol. (Lond.) 244, 741–756 (1975).
    Article CAS Google Scholar
  33. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).
    Article CAS Google Scholar
  34. Cowan, R. L. & Wilson, C. J. Spontaneous firing pattern and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J. Neurophysiol. 71, 17–32 (1994).
    Article CAS Google Scholar
  35. Contreras, D. & Steriade, M. Synchronyzation of low frequency rhythms in corticothalamic networks. Neuroscience 76, 11–24 (1997).
    Article CAS Google Scholar
  36. Crevier, D. W. & Meister, M. Synchronous period–doubling in flicker vision of salamander and man. J. Neurophysiol. 79, 1869–1878 (1998).
    Article CAS Google Scholar
  37. White, E. L. Cortical Circuits (Birkhauser, Boston, 1989).
    Book Google Scholar
  38. Stuart, G., Schiller, J. & Sakmann, B. Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 617–632 (1997).
    Article CAS Google Scholar
  39. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11985–11990 (1996).
    Article CAS Google Scholar
  40. Mainen, Z. F., Joerges, J., Hugenard, J. R. & Sejnowski, T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).
    Article CAS Google Scholar
  41. Callaway, J. C. & Ross, W. N. Frequency–dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 74, 1395–1403 (1995).
    Article CAS Google Scholar
  42. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity–dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).
    Article CAS Google Scholar
  43. Andreasen, M. & Hablitz, J. J. Local anesthetics block transient outward potassium currents in rat neocortical neurons. J. Neurophysiol. 69, 1966–1975 (1993).
    Article CAS Google Scholar
  44. Metherate, R., Cox, C. L. & Ashe, J. H. Cellular basis of neocortical activation: modulation of neural oscillations by the nucleus basalis and endegenous acetylcholine. J. Neurosci. 12, 4701–4711 (1992).
    Article CAS Google Scholar
  45. Bakin, J. S. & Weinberger, N. M. Induction of a physiological memory in the cerebral cortex by stimulation of the neucleus basalis. Proc. Natl. Acad. Sci. USA 93, 11219–11224 (1996).
    Article CAS Google Scholar
  46. Kilgard, M. P. & Merzenich, M. M. Cortical map organization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).
    Article CAS Google Scholar
  47. McCormick, D. A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progr. Neurobiol. 29, 337–388 (1992).
    Article Google Scholar
  48. Holscher, C., Anwyl, R. & Rowan, M. J. Stimulation on the positive phase of hippocampal theta rhythm induces long–term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J. Neurosci. 17, 6470–6477 (1997).
    Article CAS Google Scholar
  49. Sloan, T. B. Anesthetic effects on electrophysiologic recordings. J. Clin. Neurophysiol. 15, 217–226 (1998).
    Article CAS Google Scholar
  50. Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1–11 (1988).
    Article CAS Google Scholar

Download references