Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine (original) (raw)

References

  1. Nestler,E. J. & Aghajanian,G. K. Molecular and cellular basis of addiction. Science 278, 58–63 (1997).
    Article CAS Google Scholar
  2. Koob,G. F. & Le Moal,M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997).
    Article CAS Google Scholar
  3. Wise,R. A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).
    Article CAS Google Scholar
  4. Hope,B. T. et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244 (1994).
    Article CAS Google Scholar
  5. Hiroi,N. et al. FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc. Natl Acad. Sci. USA 94, 10397–10402 (1997).
    Article ADS CAS Google Scholar
  6. Chen,J., Kelz,M. B., Hope,B. T., Nakabeppu,Y. & Nestler,E. J. Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. J. Neurosci. 17, 4933–4941 (1997).
    Article CAS Google Scholar
  7. Nye,H. E., Hope,B. T., Kelz,M. B., Iadarola,M. & Nestler, E J. Pharmacological studies of the regulation of chronic Fos-related antigen induction by cocaine in the striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 275, 1671–1680 (1995).
    CAS PubMed Google Scholar
  8. Nye,H. E. & Nestler,E. J. Induction of chronic Fos-related antigens in rat brain by chronic morphine administration. Mol. Pharmacol. 49, 636–645 (1996).
    CAS PubMed Google Scholar
  9. Pich,E. M. et al. Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86 (1997).
    Article CAS Google Scholar
  10. Atkins,J., Carlezon,W. A., Chlan,J., Nye,H. E. & Nestler,E. J. Region-specific induction of ΔFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse 33, 118–128 (1999).
    Article CAS Google Scholar
  11. Furth,P. A. et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA 91, 9302–9306 (1994).
    Article ADS CAS Google Scholar
  12. Chen,J. et al. Transgenic animals with inducible, targeted gene expression in brain. Mol. Pharmacol. 54, 495–503 (1998).
    Article CAS Google Scholar
  13. Moratalla,R., Vallejo,M., Elibol,B. & Graybiel,A. M. D1-class dopamine receptors influence cocaine-induced persistent expression of Fos-related proteins in striatum. Neuroreport 8, 1–5 (1996).
    Article CAS Google Scholar
  14. Wolf,M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998).
    Article CAS Google Scholar
  15. Robinson, T E. & Berridge,K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291 (1993).
    Article Google Scholar
  16. Kalivas,P. W., Pierce,R. C., Cornish,J. & Sorg,B. A. A role for sensitization in craving and relapse in cocaine addiction. J. Psychopharmacol. 12, 49–53 (1998).
    Article CAS Google Scholar
  17. Carlezon, W. A. Jr et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).
    Article ADS Google Scholar
  18. Pennartz,C. M., Groenewege,H. J. & Lopes da Silva,F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).
    Article CAS Google Scholar
  19. White,F. J., Hu,X. T. & Zhang,X. F. Neuroadaptations in nucleus accumbens neurons resulting from repeated cocaine administration. Adv. Pharmacol. 42, 1006–1009 (1998).
    Article CAS Google Scholar
  20. Bai,G. & Kusiak,J. W. Cloning and analysis of the 5′ flanking sequence of the rat _N_-methyl-D-aspartate receptor 1 (NMDAR1) gene. Biochim. Biophys. Acta 1152, 197–200 (1993).
    Article CAS Google Scholar
  21. Hiroi,N. et al. Essential role of the fosB gene in molecular, cellular, and behavioral actions of electroconvulsive seizures. J. Neurosci. 18, 6952–6962 (1998).
    Article CAS Google Scholar
  22. Myers,S. J., Dingledine,R. & Borges,K. Genetic regulation of glutamate receptor ion channels. Annu. Rev. Pharmacol. Toxicol. 39, 221–241 (1999).
    Article CAS Google Scholar
  23. Brene,S., Messer,C., Okado,H., Heinemann,S. F. & Nestler,E. J. Regulation of AMPA receptor promotor activity by neurotrophic factors. Soc. Neurosci. Abs. 23, 923 (1997).
    Google Scholar
  24. Hollmann,M. & Heinemann,S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).
    Article CAS Google Scholar
  25. Seeburg,P. H., Higuchi,M. & Sprengel,R. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res. Rev. 26, 217–229 (1998).
    Article CAS Google Scholar
  26. Carlezon, W. A. Jr et al. Sensitization to morphine induced by viral-mediated gene transfer. Science 277, 812–814 (1997).
    Article Google Scholar
  27. Rocha,B. A. et al. Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393, 175–178 (1998).
    Article ADS CAS Google Scholar
  28. Peoples,L. L., Uzwiak,A. J., Guyette,F. X. & West,M. O. Tonic inhibition of single nucleus accumbens neurons in the rat: a predominant but not exclusive firing pattern induced by cocaine self-administration sessions. Neuroscience 86, 13–22 (1998).
    Article CAS Google Scholar
  29. Surmeier,D. J., Song,W. J. & Yan,Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579–6591 (1996).
    Article CAS Google Scholar
  30. Gerfen,C. R., McGinty,J. F. & Young,W. S. Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031 (1991).
    Article CAS Google Scholar

Download references