Silencing of TGF-β signalling by the pseudoreceptor BAMBI (original) (raw)

References

  1. Hoodless,P. A. & Wrana,J. L. Mechanism and function of signaling by the TGFβ superfamily. Curr. Top. Microbiol. Immunol. 228, 235–272 (1998).
    CAS PubMed Google Scholar
  2. Derynck,R. & Feng,X. H. TGF-β receptor signaling. Biochim. Biophys. Acta 1333, F105–F150 (1997).
    CAS PubMed Google Scholar
  3. Heldin,C. H., Miyazono,K. & ten Dijke,P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).
    Article ADS CAS PubMed Google Scholar
  4. Massagué,J. TGF β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
    Article PubMed Google Scholar
  5. Harland,R. M. & Gerhart,J. Formation and function of Spemann's organizer. Annu. Rev. Dev. Biol. 13, 611–667 (1997).
    Article CAS Google Scholar
  6. Sasai,Y. & De Robertis,E. M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20 (1997).
    Article CAS PubMed Google Scholar
  7. Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).
    Article CAS PubMed Google Scholar
  8. Degen,W. G. et al. Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melonoma cell lines and xenografts. Int. J. Cancer 65, 460–465 (1996).
    Article CAS PubMed Google Scholar
  9. Graff,J. M., Thies,R. S., Song,J. J., Celeste,A. J. & Melton,D. A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179 (1994).
    Article CAS PubMed Google Scholar
  10. Suzuki,A. et al. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl Acad. Sci. USA 91, 10255–10259 (1994).
    Article ADS CAS PubMed PubMed Central Google Scholar
  11. Dale,L., Howes,G., Price,B. M. & Smith,J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).
    CAS PubMed Google Scholar
  12. Jones,C. M., Lyons,K. M., Lapan,P. M., Wright,C. V. & Hogan,B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647 (1992).
    CAS PubMed Google Scholar
  13. Candia,A. F. et al. Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).
    CAS PubMed Google Scholar
  14. Chen,Y. G. et al. Determinants of specificity in TGF-β signal transduction. Genes Dev. 12, 2144–2152 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  15. Chen,X., Rubock,M. J. & Whitman,M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).
    Article ADS CAS PubMed Google Scholar
  16. Chen,Y. G. & Massagué,J. Smad1 recognition and activation by the ALK1 group of TGFβ family receptors. J. Biol. Chem. 274, 3672–3677 (1999).
    Article CAS PubMed Google Scholar
  17. Massague,J. Identification of receptors for Type beta transforming growth factor. Methods Enzymol. 146, 174–195 (1987).
    Article CAS PubMed Google Scholar
  18. Wrana,J. L., Attisano,L., Wieser,R., Ventura,F. & Massague,J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).
    Article ADS CAS PubMed Google Scholar
  19. Luo,K. & Lodish,H. F. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15, 4485–4496 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  20. Stockwell,B. R. & Schreiber,S. L. Probing the role of homomeric and heteromeric receptor interactions in TGF-β signaling using small molecule dimerizers. Curr. Biol. 8, 761–770 (1998).
    Article CAS PubMed Google Scholar
  21. Gawantka,V., Delius,H., Hirschfeld,K., Blumenstock,C. & Niehrs,C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268–6279 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  22. Chen,Y. G., Liu,F. & Massagué,J. Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J. 16, 3866–3876 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  23. Rupp,R. A., Snider,L. & Weintraub,H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).
    Article CAS PubMed Google Scholar
  24. Glinka,A., Delius,H., Blumenstock,C. & Niehrs,C. Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech. Dev. 60, 221–231 (1996).
    Article CAS PubMed Google Scholar
  25. Huang,H. C., Murtaugh,L. C., Vize,P. D. & Whitman,M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 14, 5965–5973 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  26. Candia,A. F. et al. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136 (1992).
    CAS PubMed Google Scholar
  27. Howell,M. & Hill,C. S. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16, 7411–7421 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  28. Kaufmann,E. et al. Antagonistic actions of activin A and BMP2/4 control dorsal lip-specific activation of the early response gene XFD-1′ in Xenopus laevis embryos. EMBO J. 15, 6379–6749 (1996).
    Article Google Scholar
  29. Weis-Garcia,F. & Massagué,J. Complementation between kinase-defective and activation-defective TGF-β receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 15, 276–289 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  30. Huse,M., Chen, Y.-G., Massagué,J. & Kuriya,J. Crystal structure of the cytoplasmic domain of the type I TGFb receptor in complex with FKBP12. Cell 96, 425–436 (1999).
    Article CAS PubMed Google Scholar

Download references