The Santa Barbara Basin is a symbiosis oasis (original) (raw)

References

  1. Knoll,A. H. & Holland,H. D. in Effects of Past Global Change on Life 21–33 (National Research Council, Washington, DC, 1995).
    Google Scholar
  2. Kasting,J. F. Earth's early atmosphere. Science 259, 920–926 (1993).
    Article ADS CAS Google Scholar
  3. Cockell,C. S. Biological effects of high ultraviolet radiation on early Earth—a theoretical evaluation. J. Theor. Biol. 193, 717–729 (1998).
    Article CAS Google Scholar
  4. Martin,W. & Müller,M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).
    Article ADS CAS Google Scholar
  5. Moreira,D. & López-García,P. Symbiosis between methanogenic Archaea and δ-Proteobacteria as the origin of eukaryotes: The syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).
    Article ADS CAS Google Scholar
  6. Simonson,B. M. & Carney,K. E. Roll-up structures: evidence of in situ microbial mats in Late Archaean deep shelf environments. Palaios 14, 13–24 (1999).
    Article ADS Google Scholar
  7. Reimers,C. E. et al. Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochim. Cosmochim. Acta 60, 4037–4057 (1996).
    Article ADS CAS Google Scholar
  8. Kuwabara,J. S. et al. Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin. Geochim. Cosmochim. Acta 63, 2199–2209 (1999).
    Article ADS CAS Google Scholar
  9. Soutar,A. & Crill,P. A. Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 20th centuries. Geol. Soc. Am. Bull. 88, 1161–1172 (1977).
    Article ADS Google Scholar
  10. Fenchel,T. et al. Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43, 45–100 (1995).
    Article Google Scholar
  11. Simpson,A. G. B. et al. The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis̀, Fenchel et al. Arch. Protistenkd. 147, 213–225 (1996/1997).
    Article Google Scholar
  12. Esteban,G., Fenchel,T. & Finlay,B. Diversity of free-living morphospecies in the ciliate genus Metopus. Arch. Prostistenkd. 146, 137–164 (1995).
    Article Google Scholar
  13. Fenchel,T. & Finlay,B. J. (eds) Ecology and Evolution in Anoxic Worlds (Oxford Univ. Press, Oxford, 1995).
    Google Scholar
  14. Ott,J. A., Novak,R., Schiemer,F., Hentschel,U., Nebelsick,M. & Polz,M. Tackling the sulfide gradient—a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. PSZNI Mar. Ecol. 12, 261–279 (1991).
    Article Google Scholar
  15. Buck,K. R. & Barry,J. P. Monterey Bay cold seep infauna: quantitative comparison of bacterial mat meiofauna with non-seep control sites. Cahiers de Biologie Marine 39, 333–335 (1998).
    Google Scholar
  16. Bernard,C. & Fenchel,T. Mats of colourless sulphur bacteria: II. Structure, composition of biota and successional patterns. Mar. Ecol. (Prog. Ser.) 128, 171–179 (1995).
    Article ADS Google Scholar
  17. Epstein,S. Simultaneous enumeration of protozoa and micrometazoa from marine sandy sediments. Aquat. Microb. Ecol. 9, 219–227 (1995).
    Article Google Scholar
  18. Alongi,D. M. The distribution and composition of deep-sea microbenthos in a bathyal region of the western Coral Sea. Deep-Sea Res. 34, 1245–1254 (1987).
    Article ADS CAS Google Scholar
  19. Saphonov,M. V. & Tzetlin,A. B. Nerillidae (Annelida: Polychaeta) from the White Sea, with description of a new species of Micronerilla Jouin. Ophelia 47, 215–226 (1997).
    Article Google Scholar
  20. Bernhard,J. M. Microaerophilic and facultative anaerobic benthic foraminifera: a review of experimental and ultrastructural evidence. Rev. Paleobiol. 15, 261–275 (1996).
    Google Scholar
  21. Lee,J. J. & Anderson,O. R. (eds) Biology of Foraminifera (Academic, London, 1991).
    Google Scholar
  22. Anderson,O. R. & Matsuoka,A. Endocytoplasmic microalgae and bacteroids within the central capsule of the radiolarian Dictyocoryne truncatum. Symbiosis 12, 237–247 (1992).
    Google Scholar
  23. Richardson,S. L. & Rützler,K. Bacterial endosymbionts in the agglutinating foraminiferan Spiculidendron corallicolum Rützler and Richardson, 1996. Symbiosis 26, 299–312 (1999).
    Google Scholar
  24. Bernhard,J. M. & Bowser,S. S. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci. Rev. 46, 149–165 (1999).
    Article ADS CAS Google Scholar
  25. Desbruyères,D. et al. Biology and ecology of the “Pompeii worm” (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res. II 45, 383–422 (1998).
    Article ADS Google Scholar
  26. Stolz,J. F., Chang,S-B. R. & Kirschvink,J. L. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321, 849–851 (1986).
    Article ADS Google Scholar
  27. Kennett,J. P., Baldauf,J. G. & Lyle,M. (eds) Proceedings of the Ocean Drilling Program, Scientific Results Vol. 146 Part 2 (Ocean Drilling Program, College Station, TX, 1995).
    Google Scholar
  28. Diaz,R. J. & Rosenberg,R. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).
    Google Scholar
  29. Broenkow,W. W. & Cline,J. D. Colorimetric determination of dissolved oxygen at low concentrations. Limnol. Oceanogr. 14, 450–454 (1969).
    Article ADS CAS Google Scholar
  30. Starink,M. et al. Quantitative centrifugation to extract benthic protozoa from freshwater sediments. Appl. Environ. Microbiol. 60, 167–173 (1994).
    CAS PubMed PubMed Central Google Scholar

Download references