Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype (original) (raw)

References

  1. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).
    Article CAS Google Scholar
  2. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17, 498–502 (1997).
    Article CAS Google Scholar
  3. McKay, B.S. & Burke, J.M. Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells. Exp. Cell Res. 213, 85–92 (1994).
    Article CAS Google Scholar
  4. Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
    Article CAS Google Scholar
  5. Alcorta, D.A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).
    Article CAS Google Scholar
  6. Linke, S.P., Clarkin, K.C., Di Leonardo, A., Tsou, A. & Wahl, G.M. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10, 934– 947 (1996).
    Article CAS Google Scholar
  7. Pedrali-Noy, G. et al. Synchronization of HeLa cell cultures by inhibition of DNA polymerase α with aphidicolin. Nucleic Acids Res. 8, 377–387 (1980).
    Article CAS Google Scholar
  8. White, A.E., Livanos, E.M. & Tlsty, T.D. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677 ( 1994).
    Article CAS Google Scholar
  9. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C. & Wahl, G.M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70, 937–948 (1992).
    Article CAS Google Scholar
  10. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).
    Article CAS Google Scholar
  11. Schwartz, D., Almog, N., Peled, A., Goldfinger, N. & Rotter, V. Role of wild type p53 in the G2 phase: regulation of the γ-irradiation-induced delay and DNA repair. Oncogene 15, 2597–2607 ( 1997).
    Article CAS Google Scholar
  12. Khan, S.H. & Wahl, G.M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 58, 396–401 (1998).
    CAS PubMed Google Scholar
  13. Gualberto, A., Aldape, K., Kozakiewicz, K. & Tlsty, T.D. An oncogenic form of p53 confers a dominant, gain-of-function phenotype that disrupts spindle checkpoint control. Proc. Natl Acad. Sci. USA 95, 5166–5171 ( 1998).
    Article CAS Google Scholar
  14. Freedman, V.H. & Shin, S.I. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3, 355–359 ( 1974).
    Article CAS Google Scholar
  15. Shin, S., Freedman, V.H., Risser, R. & Pollack, R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl Acad. Sci. USA 72, 4435–4439 ( 1975).
    Article CAS Google Scholar
  16. Saksela, E. & Moorhead, P.S. Aneuploidy in the degenerative phase of serial cultivation of human cell strains. Genetics 50, 390–395 (1963).
    CAS Google Scholar
  17. Benn, P.A. Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos. Am. J. Hum. Genet. 28, 465–473 (1976).
    CAS PubMed PubMed Central Google Scholar
  18. Johnson, T.E. et al. Karyotypic and phenotypic changes during in vitro aging of human endothelial cells. J. Cell Physiol. 150, 17–27 (1992).
    Article CAS Google Scholar
  19. Lee, H.W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 92, 569– 574 (1998).
    Article Google Scholar
  20. Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W. & Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).
    Article CAS Google Scholar
  21. Chiu, C.P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996).
    Article CAS Google Scholar
  22. Mullen, P., Ritchie, A., Langdon, S.P. & Miller, W.R. Effect of matrigel on the tumorigenicity of human breast and ovarian carcinoma cell lines. Int. J. Cancer 67, 816– 820 (1996).
    Article CAS Google Scholar
  23. Noel, A. et al. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br. J. Cancer 68, 909–915 (1993).
    Article CAS Google Scholar

Download references