Response of melanocortin–4 receptor–deficient mice to anorectic and orexigenic peptides (original) (raw)
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994). ArticleCAS Google Scholar
Montague, C.T. et al. Congenital leptin deficiency is associated with severe early–onset obesity in humans. Nature387, 903– 908 (1997). ArticleCAS Google Scholar
Lee, G.–H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature379, 632–635 (1996). ArticleCAS Google Scholar
Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature392, 398 –401 (1998). ArticleCAS Google Scholar
Krude, H. et al. Severe early–onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 ( 1998). ArticleCAS Google Scholar
Huszar, D. et al. Targeted disruption of the melanocortin–4 receptor results in obesity in mice. Cell88, 131– 141 (1997). ArticleCAS Google Scholar
Manne, J., Argeson, A.C. & Siracusa, L.D. Mechanisms for the pleiotropic effects of the agouti gene. Proc. Natl Acad. Sci. USA92, 4721 –4724 (1995). ArticleCAS Google Scholar
Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti–related protein. Science278 , 135–138 (1997). ArticleCAS Google Scholar
Lu, D. et al. Agouti protein is an antagonist of the melanocyte–stimulating–hormone receptor. Nature371, 799– 802 (1994). ArticleCAS Google Scholar
Gantz, I. et al. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem.268, 8246–8250 (1993). CASPubMed Google Scholar
Gantz, I. et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem.268, 15174–15179 (1993). CASPubMed Google Scholar
Hruby, V.J. et al. Cyclic lactam α–melanotropin analogues of Ac–Nle4–cyclo[Asp5, D–Phe7, Lys10] α–melanocyte–stimulating hormone–(4–10)–NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem.38, 3454–3461 ( 1995). ArticleCAS Google Scholar
Halaas, J.L. et al. Physiological response to long–term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA94, 8878–8883 ( 1997). ArticleCAS Google Scholar
Boston, B.A., Blaydon, K.M., Varnerin, J. & Cone, R.D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science278, 1641– 1644 (1997). ArticleCAS Google Scholar
Starr, R. et al. A family of cytokine–inducible inhibitors of signalling. Nature387, 917–921 (1997). ArticleCAS Google Scholar
Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS–3 as a potential mediator of central leptin resistance. Mol. Cell1, 619–625 (1998). ArticleCAS Google Scholar
Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature395, 763–770 (1998). ArticleCAS Google Scholar
Gloaguen, I. et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl Acad. Sci. USA94, 6456–6461 ( 1997). ArticleCAS Google Scholar
Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P. & Baskin, D.G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest.98, 1101–1106 (1996). ArticleCAS Google Scholar
Hollopeter, G., Erickson, J.C., Seeley, R.J., Marsh, D.J. & Palmiter, R.D. Response of neuropeptide Y–deficient mice to feeding effectors. Regul. Pept. (in press).
Costa, A. et al. Stimulation of corticotrophin–releasing hormone release by the obese (ob) gene product, leptin, from hypothalamic explants. Neuroreport8, 1131–1134 (1997). ArticleCAS Google Scholar
Spina, M. et al. Appetite–suppressing effects of urocortin, a CRF–related neuropeptide. Science273, 1561– 1564 (1996). ArticleCAS Google Scholar
Muglia, L., Jacobson, L., Dikkes, P. & Majzoub, J.A. Corticotropin–releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature373, 427–432 (1995). ArticleCAS Google Scholar
Smith, G.W. et al. Corticotopin releasing factor receptor 1–deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron20, 1093– 1102 (1998). ArticleCAS Google Scholar
Sahu, A., Kalra, P.S. & Kalra, S.P. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides9, 83–86 ( 1988). ArticleCAS Google Scholar
Hahn, T., Breininger, J., Baskin, D. & Schwartz, M. Coexpression of Agrp and NPY in fasting–activated hypothalamic neurons. Nature Neurosci.1, 271– 272 (1998). ArticleCAS Google Scholar
De Lecea, L. et al. The hypocretins: hypothalamus–specific peptides with neuroexcitability activity. Proc. Natl Acad. Sci. USA95, 322–327 (1998). ArticleCAS Google Scholar
Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein–coupled receptors that regulate feeding behavior. Cell92, 573–585 ( 1998). ArticleCAS Google Scholar
Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature381, 415–418 (1996). ArticleCAS Google Scholar
Di Marco, A. et al. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc. Natl Acad. Sci. USA93, 9247–9252 (1996). ArticleCAS Google Scholar