Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription (original) (raw)

References

  1. Antequera, F. Boyes, J. Bird, A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514 (1990).
    CAS Google Scholar
  2. Keshet, I. Lieman-Hurwitz, J. Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44, 535–543 ( 1986).
    Article CAS PubMed Google Scholar
  3. Yoder, J.A. Walsh, C.P. Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).
    Article CAS PubMed Google Scholar
  4. Bird, A. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).
    Article CAS PubMed Google Scholar
  5. Li, E. Beard, C. Jaenisch, R. Role of DNA methylation in genomic imprinting. Nature 366 , 362–365 (1993).
    Article CAS PubMed Google Scholar
  6. Zingg, J.M. Jones, P.A. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18, 869–882 (1997).
    Article CAS PubMed Google Scholar
  7. Jones, P.A. Gonzalgo, M.L. Altered DNA methylation and genome instability: a new pathway to cancer? Proc. Natl. Acad. Sci. USA 94, 2103–2105 (1997).
    Article CAS PubMed Google Scholar
  8. Gonzalez-Zulueta, M. et al. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535 (1995).
    CAS Google Scholar
  9. Baylin, S.B. Herman, J.G. Graff, J.R. Vertino, P.M. Issa, J.P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).
    Article CAS PubMed Google Scholar
  10. Merlo, A. et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).
    CAS Google Scholar
  11. Buschhausen, G. Wittig, B. Graessmann, M. Graessman, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181 (1987).
    Article CAS PubMed Google Scholar
  12. Kass, S.U. Landsberger, N. Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation . Curr. Biol. 7, 157–165 (1997).
    Article CAS PubMed Google Scholar
  13. Nan, X. Campoy, J. Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin . Cell 88, 1–11 (1997).
    Article Google Scholar
  14. Nan, X. Tate, P. Li, E. Bird, A.P. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16, 414–421 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  15. Ayer, D.E. Lawrence, Q.A. Eisenman, R.N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).
    Article CAS PubMed Google Scholar
  16. Alland, L. et al. Role of NCoR and histone deacetylase in Sin3-mediated transcriptional and oncogenic repression. Nature 387, 49–55 (1997).
    CAS Google Scholar
  17. Heinzel, T. et al. N-CoR, mSIN3, and histone deacetylase in a complex required for repression by nuclear receptors and Mad. Nature 387, 43–48 (1997).
    CAS Google Scholar
  18. Laherty, C.D. et al. Histone deacetylase associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89, 349–356 (1997).
    Article CAS PubMed Google Scholar
  19. Kadosh, D. Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–571 (1997).
    Article CAS PubMed Google Scholar
  20. Wong, J. Patterton, D. Imhof, A. Shi, Y.-B. Wolffe, A.P. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J. 17, 520–534 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  21. Nan, X. Meehan, R.R. Bird, A.P. Dissection of the methyl-CpG binding domain from the chromosal protein MeCP2. Nucleic Acids Res. 21, 4886–4892 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  22. Landsberger, N. Wolffe, A.P. The role of chromatin and Xenopus heat shock transcription factor (XHSF1) in the regulation of the Xenopus hsp70 promoter in vivo. Mol. Cell. Biol. 15, 6013–6024 (1995).
    CAS Google Scholar
  23. Landsberger, N. Wolffe, A.P. Remodeling of regulatory nucleoprotein complexes on the Xenopus hsp70 promoter during meiotic maturation of the Xenopus oocyte. EMBO J. 16, 4361–4373 (1997).
    CAS Google Scholar
  24. Hsieh, C. -L.Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494 ( 1994).
    Article CAS PubMed PubMed Central Google Scholar
  25. Kass, S.U. Goddard, J.P. Adams, R.L.P. Inactive chromatin spreads from a focus of methylation. Mol. Cell. Biol. 13, 7372–7379 ( 1993).
    Article CAS PubMed PubMed Central Google Scholar
  26. Leonhardt, H. Page, A.W. Weier, H.-U. Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei . Cell 71, 865–873 (1992).
    Article CAS PubMed Google Scholar
  27. Gruenbaum, Y. Szyf, M. Cedar, H. Razin, A. Methylation of replicating and post replicated mouse L-cell DNA. Proc. Natl. Acad. Sci. USA 80, 4919–4921 ( 1983).
    Article CAS PubMed Google Scholar
  28. De Pinho, R. The cancer-chromatin connection. Nature 391, 533–536 (1998).
    Article CAS Google Scholar
  29. Godde, J.S. Kass, S.U. Hirst, M.C. Wolffe, A.P. Nucleosome assembly on methylated CGG triplet repeats in the Fragile X Mental Retardation gene 1 promoter. J. Biol. Chem. 271, 24325–24328 (1990).
    Article Google Scholar
  30. Davey, C. Pennings, S. Allan, J. DNA methylation remodels chromatin structure in vitro. J. Mol. Biol. 267, 276–298 ( 1997).
    Article CAS PubMed Google Scholar

Download references