Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1 (original) (raw)

References

  1. Stoye, J.P., Moroni, C. & Coffin, J.M. Virological events leading to spontaneous AKR thymomas. J. Virol. 65, 1273–1285 (1991).
    CAS PubMed PubMed Central Google Scholar
  2. Fan, H. Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol. 5, 74–82 (1997 ).
    Article CAS Google Scholar
  3. Ruscetti, S., Davis, L., Field, J. & Oliff, A. Friend murine leukemia virus–induced leukemia is associated with the formation of mink cell focus–inducing viruses and is blocked in mice expressing endogenous mink cell focus–inducing xenotropic viral envelope genes. J. Exp. Med. 154, 907–920 (1981).
    Article CAS Google Scholar
  4. Herr, W. & Gilbert, W. Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice. J. Virol. 50, 155–162 ( 1984).
    CAS PubMed PubMed Central Google Scholar
  5. Hunter, K., Housman, D. & Hopkins, N. Isolation and characterization of irradiation fusion hybrids from mouse chromosome 1 for mapping Rmc1, a gene encoding a cellular receptor for MCF class murine retroviruses. Somat. Cell Mol. Genet. 17, 169–183 (1991).
    Article CAS Google Scholar
  6. Kozak, C.A. Genetic mapping of a mouse chromosomal locus required for mink cell focus–forming virus replication. J. Virol. 48, 300– 303 (1983).
    CAS PubMed PubMed Central Google Scholar
  7. Lyu, M. & Kozak, C.A. Genetic basis for resistance to polytropic murine leukemia viruses in the wild mouse species Mus castaneus . J. Virol. 70, 830– 833 (1996).
    CAS PubMed PubMed Central Google Scholar
  8. Spain, B.H., Koo, D., Ramakrishnan, M., Dzudzor, B. & Colicelli, J. Truncated forms of a novel yeast protein suppress the lethality of a G protein α subunit deficiency by interacting with the β subunit. J. Biol. Chem. 270, 25435–25444 (1995).
    Article CAS Google Scholar
  9. Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl Acad. Sci. USA 92, 9146– 9150 (1995).
    Article CAS Google Scholar
  10. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high–titer helper–free retroviruses by transit transfection. Proc. Natl Acad. Sci. USA 90, 8392– 8396 (1993).
    Article CAS Google Scholar
  11. Albritton, L.M., Tseng, L., Scadden, D. & Cunningham, J.M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane–spanning protein and confers susceptibility to virus infection. Cell 57, 659–666 (1989).
    Article CAS Google Scholar
  12. Loiler, S.A., DiFronzo, N.L. & Holland, C.A. Gene transfer to human cells using retrovirus vectors produced by a new polytropic packaging cell line. J. Virol. 71, 4825–4828 (1997).
    CAS PubMed PubMed Central Google Scholar
  13. Davey, R.A., Hamson, C.A., Healey, J.J. & Cunningham, J.M. In vitro binding of purified murine ecotropic retrovirus envelope surface protein to its receptor, MCAT–1. J. Virol. 71 , 8096–8102 (1997).
    CAS PubMed PubMed Central Google Scholar
  14. Battini, J.L., Heard, J.M. & Danos, O. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J. Virol. 66, 1468–1475 (1992).
    CAS PubMed PubMed Central Google Scholar
  15. Ott, D. & Rein, A. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. J. Virol. 66, 4632–4638 (1992).
    CAS PubMed PubMed Central Google Scholar
  16. Battini, J.L., Danos, O. & Heard, J.M. Receptor–binding domain of murine leukemia virus envelope glycoproteins. J. Virol. 69, 713 –719 (1995).
    CAS PubMed PubMed Central Google Scholar
  17. Chesebro, B. & Wehrly, K. Different murine cell lines manifest unique patterns of interference to superinfection by murine leukemia viruses. Virology 141, 119–129 (1985).
    Article CAS Google Scholar
  18. Kozak, C.A. Susceptibility of wild mouse cells to exogenous infection with xenotropic leukemia viruses: control by a single dominant locus on chromosome 1. J. Virol. 55, 690–695 ( 1985).
    CAS PubMed PubMed Central Google Scholar
  19. Adams, R.M. et al. Transduction of primary human hepatocytes with amphotropic and xenotropic retroviral vectors. Proc. Natl Acad. Sci. USA 89, 8981–8985 (1992).
    Article CAS Google Scholar
  20. Fass, D. et al. Structure of a murine leukemia virus receptor–binding glycoprotein domain at 2.0 Angstrom resolution. Science 277, 1662–1666 (1997).
    Article CAS Google Scholar
  21. Li, J.P. & Baltimore, D. Mechanism of leukemogenesis induced by mink cell focus–forming murine leukemia viruses. J. Virol. 65, 2408–2414 ( 1991).
    CAS PubMed PubMed Central Google Scholar
  22. Flubacher, M.M., Bear, S.E. & Tsichlis, P.N. Replacement of interleukin–2 (IL–2)–generated mitogenic signals by a mink cell focus–forming (MCF) or xenotropic virus–induced IL–9–dependent autocrine loop: implications for MCF virus–induced leukemogenesis. J. Virol. 68, 7709– 7716 (1994).
    CAS PubMed PubMed Central Google Scholar
  23. Kusumi, K., Smith, J.S., Segre, J.A., Koos, D.S. & Lander, E.S. Construction of a large–insert yeast artificial chromosome library of the mouse genome. Mamm. Genome 4, 391–392 (1993).
    Article CAS Google Scholar
  24. Hunter, K.W. et al. Rapid and efficient construction of yeast artificial chromosome contigs in the mouse genome utilizing interspersed repetitive sequence PCR (IRS–PCR): generation of a 5 cM, >5 megabase contig on mouse chromosome 1. Mamm. Genome 5, 597– 607 (1994).
    Article CAS Google Scholar
  25. Traunecker, A., Schneider, J., Kiefer, H. & Karjalainen, K. Highly efficient neutralization of HIV with recombinant CD4–immunoglobulin molecules. Nature 339, 68– 70 (1989).
    Article CAS Google Scholar
  26. Brojatsch, J., Naughton, J., Rolls, M.M., Zingler, K. & Young, J.A.T. CAR1, a TNFR–related protein, is a cellular receptor for cytopathic avian leukosis–sarcoma viruses and mediates apoptosis. Cell 87, 845– 855 (1996).
    Article CAS Google Scholar

Download references