Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1 (original) (raw)
References
Stoye, J.P., Moroni, C. & Coffin, J.M. Virological events leading to spontaneous AKR thymomas. J. Virol.65, 1273–1285 (1991). CASPubMedPubMed Central Google Scholar
Fan, H. Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol.5, 74–82 (1997 ). ArticleCAS Google Scholar
Ruscetti, S., Davis, L., Field, J. & Oliff, A. Friend murine leukemia virus–induced leukemia is associated with the formation of mink cell focus–inducing viruses and is blocked in mice expressing endogenous mink cell focus–inducing xenotropic viral envelope genes. J. Exp. Med.154, 907–920 (1981). ArticleCAS Google Scholar
Herr, W. & Gilbert, W. Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice. J. Virol.50, 155–162 ( 1984). CASPubMedPubMed Central Google Scholar
Hunter, K., Housman, D. & Hopkins, N. Isolation and characterization of irradiation fusion hybrids from mouse chromosome 1 for mapping Rmc1, a gene encoding a cellular receptor for MCF class murine retroviruses. Somat. Cell Mol. Genet.17, 169–183 (1991). ArticleCAS Google Scholar
Kozak, C.A. Genetic mapping of a mouse chromosomal locus required for mink cell focus–forming virus replication. J. Virol.48, 300– 303 (1983). CASPubMedPubMed Central Google Scholar
Lyu, M. & Kozak, C.A. Genetic basis for resistance to polytropic murine leukemia viruses in the wild mouse species Mus castaneus . J. Virol.70, 830– 833 (1996). CASPubMedPubMed Central Google Scholar
Spain, B.H., Koo, D., Ramakrishnan, M., Dzudzor, B. & Colicelli, J. Truncated forms of a novel yeast protein suppress the lethality of a G protein α subunit deficiency by interacting with the β subunit. J. Biol. Chem.270, 25435–25444 (1995). ArticleCAS Google Scholar
Kitamura, T. et al. Efficient screening of retroviral cDNA expression libraries. Proc. Natl Acad. Sci. USA92, 9146– 9150 (1995). ArticleCAS Google Scholar
Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high–titer helper–free retroviruses by transit transfection. Proc. Natl Acad. Sci. USA90, 8392– 8396 (1993). ArticleCAS Google Scholar
Albritton, L.M., Tseng, L., Scadden, D. & Cunningham, J.M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane–spanning protein and confers susceptibility to virus infection. Cell57, 659–666 (1989). ArticleCAS Google Scholar
Loiler, S.A., DiFronzo, N.L. & Holland, C.A. Gene transfer to human cells using retrovirus vectors produced by a new polytropic packaging cell line. J. Virol.71, 4825–4828 (1997). CASPubMedPubMed Central Google Scholar
Davey, R.A., Hamson, C.A., Healey, J.J. & Cunningham, J.M. In vitro binding of purified murine ecotropic retrovirus envelope surface protein to its receptor, MCAT–1. J. Virol.71 , 8096–8102 (1997). CASPubMedPubMed Central Google Scholar
Battini, J.L., Heard, J.M. & Danos, O. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses. J. Virol. 66, 1468–1475 (1992). CASPubMedPubMed Central Google Scholar
Ott, D. & Rein, A. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. J. Virol. 66, 4632–4638 (1992). CASPubMedPubMed Central Google Scholar
Battini, J.L., Danos, O. & Heard, J.M. Receptor–binding domain of murine leukemia virus envelope glycoproteins. J. Virol.69, 713 –719 (1995). CASPubMedPubMed Central Google Scholar
Chesebro, B. & Wehrly, K. Different murine cell lines manifest unique patterns of interference to superinfection by murine leukemia viruses. Virology141, 119–129 (1985). ArticleCAS Google Scholar
Kozak, C.A. Susceptibility of wild mouse cells to exogenous infection with xenotropic leukemia viruses: control by a single dominant locus on chromosome 1. J. Virol.55, 690–695 ( 1985). CASPubMedPubMed Central Google Scholar
Adams, R.M. et al. Transduction of primary human hepatocytes with amphotropic and xenotropic retroviral vectors. Proc. Natl Acad. Sci. USA89, 8981–8985 (1992). ArticleCAS Google Scholar
Fass, D. et al. Structure of a murine leukemia virus receptor–binding glycoprotein domain at 2.0 Angstrom resolution. Science277, 1662–1666 (1997). ArticleCAS Google Scholar
Li, J.P. & Baltimore, D. Mechanism of leukemogenesis induced by mink cell focus–forming murine leukemia viruses. J. Virol.65, 2408–2414 ( 1991). CASPubMedPubMed Central Google Scholar
Flubacher, M.M., Bear, S.E. & Tsichlis, P.N. Replacement of interleukin–2 (IL–2)–generated mitogenic signals by a mink cell focus–forming (MCF) or xenotropic virus–induced IL–9–dependent autocrine loop: implications for MCF virus–induced leukemogenesis. J. Virol.68, 7709– 7716 (1994). CASPubMedPubMed Central Google Scholar
Kusumi, K., Smith, J.S., Segre, J.A., Koos, D.S. & Lander, E.S. Construction of a large–insert yeast artificial chromosome library of the mouse genome. Mamm. Genome4, 391–392 (1993). ArticleCAS Google Scholar
Hunter, K.W. et al. Rapid and efficient construction of yeast artificial chromosome contigs in the mouse genome utilizing interspersed repetitive sequence PCR (IRS–PCR): generation of a 5 cM, >5 megabase contig on mouse chromosome 1. Mamm. Genome5, 597– 607 (1994). ArticleCAS Google Scholar
Traunecker, A., Schneider, J., Kiefer, H. & Karjalainen, K. Highly efficient neutralization of HIV with recombinant CD4–immunoglobulin molecules. Nature339, 68– 70 (1989). ArticleCAS Google Scholar
Brojatsch, J., Naughton, J., Rolls, M.M., Zingler, K. & Young, J.A.T. CAR1, a TNFR–related protein, is a cellular receptor for cytopathic avian leukosis–sarcoma viruses and mediates apoptosis. Cell87, 845– 855 (1996). ArticleCAS Google Scholar