Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta (original) (raw)
References
Rickard, D.J., Sullivan, T.A., Shenker, B.J., Leboy, P.S. & Kazhdan, I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev. Biol.161, 218–228 (1993). Article Google Scholar
Malaval, L., Modrowski, D., Gupta, A.K. & Aubin, J.E. Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J. Cell. Physiol.158, 555–572 (1994). ArticleCAS Google Scholar
Goshima, J., Goldberg, V. & Caplan, A. The osteogenic potential of culture expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin. Orthop.262, 298– 311 (1991). Google Scholar
Ohgushi, H., Goldberg, V.M. & Caplan, A.I. Repair of bone defects with marrow cells and porous ceramic: Experiments in rats. Acta Orthop. Scand.60 , 334–339 (1989). ArticleCAS Google Scholar
Nakahara, H., Goldberg, V.M. & Caplan, A.I. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J. Orthop. Res.9, 465–476 (1997). Article Google Scholar
Triffitt, J.T. in Principles of Bone Biology (eds. Bilezikian, J.P., Riasz, L.G. & Rodan, G.A.) 39–50 (Academic, San Diego, California 1996). Google Scholar
Aubin, J.E. & Liu, F. in Principles of Bone Biology (eds. Bilezikian, J.P., Riasz, L.G. & Rodan, G.A.) 51– 67 (Academic, San Diego, California 1996). Google Scholar
Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science279, 1528–1530 (1998). ArticleCAS Google Scholar
Onyia, J.E., Clapp, D.W., Long, H. & Hock, J.M. Trabecular and endosteal osteoprogenitor cells as targets for ex-vivo gene transfer. J. Bone Min. Res.13, 20–30 (1998). ArticleCAS Google Scholar
Hou, Z. et al. Bone tissue-targeted expression of an osteocalcin promoter-reporter construct delivered by total bone marrow adherent cell transplantation. J. Bone Miner. Res. S428 (1997).
Pereira, R.F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA92, 4857– 4861 (1995). ArticleCAS Google Scholar
Byers, P.H. in The Metabolic and Molecular Bases of Inherited Disease 3rd edn. (eds. Scriver C.R., Beaudet A.L., Sly W.S. & Valle D.) 4029 –4077 (McGraw-Hill, New York, 1995 ). Google Scholar
Sillence, D.O. in Principles and Practice of Medical Genetics 3rd edn. (eds. Rimoin D.L., Connor J.M. & Pyeritz R.E.) 2779– 2816 (Churchill Livingstone, New York, 1997). Google Scholar
Marini, J.C. & Gerber, N.L. Osteogenesis imperfecta. Rehabilitation and prospects for gene therapy. J. Am. Med. Assoc.277, 746–750 (1997). ArticleCAS Google Scholar
Glorieux, F.H. et al. Cyclic administration of Pamidronate in children with severe osteogenesis imperfecta. N. Engl. J. Med.339, 947–952, 1998. ArticleCAS Google Scholar
Pereira, R.F. et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA95, 1142– 1147 (1998). ArticleCAS Google Scholar
Frost, H.M. in Orthopedic Lectures Vol. III, 59 and 124–130 (Charles C. Thomas Publisher, Springfield, Illinois, 1973 ). Google Scholar
Parsons, V. in Color Atlas of Bone Disease. 85 (Yearbook Medical Publishers Inc., Illinois, 1980). Google Scholar
Jett, S., Ramser, J.R., Frost, H.M. & Villanueva, A.R. Bone Turnover and Osteogenesis Imperfecta. Arch. Pathol.81, 112–116, 1966. CASPubMed Google Scholar
Koo, W.W.K., Bush, A.J., Walters, J. & Carlson, S.E. Postnatal development of bone mineral status during infancy. J. Amer. Coll. Nutr.17, 65–70 (1998). ArticleCAS Google Scholar
Hamill, P.V.V. et al. Physical growth: National Center for Health Statistics percentiles. Am. J. Clin. Nutr.32, 607– 629, 1979. ArticleCAS Google Scholar
Marini, J.C., Bordenick, S., Heavner, G., Rose, S. & Chrousos, G.P. Evaluation of growth hormone axis and responsiveness to growth stimulation of short children with osteogenesis imperfecta. Am. J. Med. Genet.45, 261– 264 (1993). ArticleCAS Google Scholar
Coccia, P.F. et al. Successful bone-marrow transplantation for infantile malignant osteopetrosis. N. Engl. J. Med.302, 701 –708 (1980). ArticleCAS Google Scholar
Teitelbaum, S.L., Tondravi, M.M. & Ross, F.P. Osteoclasts, macrophages, and the molecular mechanisms of bone resorption. J. Leukoc. Biol.61, 381–388 (1997). ArticleCAS Google Scholar
Sanders, J.E. et al. Growth and development following marrow transplantation for leukemia. Blood68, 1129– 1135 (1986). CASPubMed Google Scholar
Growchow, L.B. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin. Oncol. 20 (4, Suppl 4) 18–25 (1993). Google Scholar
Blazar, B.R. Pretransplant condition with busulfan and cyclophosphamide for nonmalignant diseases. Transplantation9, 597– 603 (1985). Article Google Scholar
Hartmann, O. et al. High-dose busulfan and cyclophosphamide with autologous bone marrow transplantation support in advanced malignancies in children: a phase II study. J. Clin. Oncol.4, 1804– 1810 (1986). ArticleCAS Google Scholar
Constantinou, C. et al. Phenotypic heterogeneity in osteogenesis imperfecta: the mildly affected mother of a proband with a lethal variant has the same mutation substituting cysteine for α-glycine 904 in a type I procollagen gene (COL1A1). Am. J. Hum. Genet.47, 670–679 (1990). CASPubMedPubMed Central Google Scholar
Sokolov, B.P., Mays, P.K., Khillan, J.S. & Prockop, D.J. Tissue- and development-specific expression in transgenic mice in the type I procollagen (COL1A1) mini-gene construct with 2.3 kb of the promoter region and 2 kb of the 3'-flanking region. Specificity is independent of putative regulatory sequences of the first intron. Biochemistry32, 9242–9249 (1993). ArticleCAS Google Scholar
Malech, H.L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA94, 12133–12138 (1997). ArticleCAS Google Scholar
Lajeunesse, D., Busque, L., Menard, P., Brunette, M.G. & Bonny, Y. Demonstration of an osteoblast defect in two cases of human malignant osteopetrosis. J. Clin. Invest.98, 1835–1842 (1996). ArticleCAS Google Scholar
Fedde, K.N. et al. Amelioration of the skeletal disease in hypophosphatasia by bone marrow transplantation using the alkaline phosphatase-knockout mouse model. Am. J. Hum. Genet.59, A15 (1996). Google Scholar
Robey, P.G. & Termine, J.D. Human bone cells in vitro. Calcif. Tissue Int.37, 453– 460 (1985). ArticleCAS Google Scholar
Koo, W.W.K., Masson, L.R. & Walters, J. Validation of accuracy and precision of dual energy x-ray absorptiometry for infants. J. Bone Miner. Res.10, 1111–1115 (1995). ArticleCAS Google Scholar
Koo, W.W.K., Walters, J., Bush, A.J., Chesny, R.W. & Carlson, S.E. Dual energy x-ray absorptiometry studies of bone mineral status of newborn infants. J. Bone Miner. Res.11, 997–1002 (1995). Article Google Scholar