Ubiquitin-dependent degradation of TGF-β-activated Smad2 (original) (raw)

References

  1. Roberts, A. B. & Sporn, M. B. in Peptide Growth Factors and their Receptors (eds Sporn, M. B. & Roberts, A. B.) 419–472 (Springer, Heidelberg, 1990).
    Book Google Scholar
  2. Massagué, J. The transforming growth factor-β family. Annu. Rev. Cell Biol. 6, 597–641 (1990).
    Article Google Scholar
  3. Hogan, B. L. M. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).
    Article CAS Google Scholar
  4. Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 12, 2445–2462 (1998).
    Article CAS Google Scholar
  5. Massagué, J. TGFβ signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
    Article Google Scholar
  6. Heldin, C.-H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).
    Article CAS Google Scholar
  7. Zhang, Y. & Derynck, R. Regulation of Smad signaling by protein associations and signaling crosstalk. Trends Cell Biol. 9, 274–279 (1999).
    Article CAS Google Scholar
  8. Abdollah, S. et al. TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem. 272, 27678–27685 (1997).
    Article CAS Google Scholar
  9. Souchelnytskyi, S. et al. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J. Biol. Chem. 272, 28107–28115 (1997).
    Article CAS Google Scholar
  10. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).
    Article CAS Google Scholar
  11. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).
    Article CAS Google Scholar
  12. Chen, X. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 85–89 (1997).
    Article CAS Google Scholar
  13. Liu, F., Pouponnot, C. & Massagué, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional responses. Genes Dev. 11, 3157–3167 (1997).
    Article CAS Google Scholar
  14. Labbé, E., Silvestri, C., Hoodless, P. A., Wrana, J. L. & Attisano, L. Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2, 109–120 (1998).
    Article Google Scholar
  15. Liu, B., Dou, C., Prabhu, L. & Lai, E. Fast2 is a mammalian winged helix protein that mediates TGFβ signals. Mol. Cell Biol. 19, 424–430 (1999).
    Article Google Scholar
  16. Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A Smad transcriptional corepressor. Cell 97, 29–39 (1999).
    Article CAS Google Scholar
  17. Baker, J. & Harland, R. M. A novel mesoderm inducer, mMadr-2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880–1889 (1996).
    Article CAS Google Scholar
  18. Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623 (1996).
    Article CAS Google Scholar
  19. Hata, A., Lo, R. S., Wotton, D., Lagna, M. & Massagué, J. Mutations increasing autoinhibition inactivate the tumour suppressors Smad2 and Smad4. Nature 388, 82–86 (1997).
    Article CAS Google Scholar
  20. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).
    Article CAS Google Scholar
  21. Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).
    Article CAS Google Scholar
  22. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).
    Article CAS Google Scholar
  23. Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224 (1996).
    Article CAS Google Scholar
  24. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & M assagué, J. The TGF-β mediator Smad1 is directly phosphorylated and functionally activated by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).
    Article CAS Google Scholar
  25. Spencer, E., Jiang, J. and Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).
    Article CAS Google Scholar
  26. Gonen, H. et al. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation of subsequent degradation of IκBα. J. Biol. Chem. 274, 14823–14830 (1999)
    Article CAS Google Scholar
  27. Maniatis, T. A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13, 505–510 (1999).
    Article CAS Google Scholar
  28. Zhu, H. et al. A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).
    Article CAS Google Scholar
  29. Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by ongenic ras. Genes Dev. 13, 804–816 (1999).
    Article CAS Google Scholar
  30. Lo, R. S., Chen, Y. G., Shi, Y. G., Pavletich, N. & Massagué, J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J 17, 996–1005 (1998).
    Article CAS Google Scholar

Download references