Ubiquitin-dependent degradation of TGF-β-activated Smad2 (original) (raw)
References
Roberts, A. B. & Sporn, M. B. in Peptide Growth Factors and their Receptors (eds Sporn, M. B. & Roberts, A. B.) 419–472 (Springer, Heidelberg, 1990). Book Google Scholar
Massagué, J. The transforming growth factor-β family. Annu. Rev. Cell Biol.6, 597–641 (1990). Article Google Scholar
Hogan, B. L. M. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev.10, 1580–1594 (1996). ArticleCAS Google Scholar
Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev.12, 2445–2462 (1998). ArticleCAS Google Scholar
Massagué, J. TGFβ signal transduction. Annu. Rev. Biochem.67, 753–791 (1998). Article Google Scholar
Heldin, C.-H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390, 465–471 (1997). ArticleCAS Google Scholar
Zhang, Y. & Derynck, R. Regulation of Smad signaling by protein associations and signaling crosstalk. Trends Cell Biol.9, 274–279 (1999). ArticleCAS Google Scholar
Abdollah, S. et al. TβRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J. Biol. Chem.272, 27678–27685 (1997). ArticleCAS Google Scholar
Souchelnytskyi, S. et al. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signaling. J. Biol. Chem.272, 28107–28115 (1997). ArticleCAS Google Scholar
Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78, 761–771 (1994). ArticleCAS Google Scholar
Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science268, 726–731 (1995). ArticleCAS Google Scholar
Chen, X. et al. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature389, 85–89 (1997). ArticleCAS Google Scholar
Liu, F., Pouponnot, C. & Massagué, J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional responses. Genes Dev.11, 3157–3167 (1997). ArticleCAS Google Scholar
Labbé, E., Silvestri, C., Hoodless, P. A., Wrana, J. L. & Attisano, L. Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell2, 109–120 (1998). Article Google Scholar
Liu, B., Dou, C., Prabhu, L. & Lai, E. Fast2 is a mammalian winged helix protein that mediates TGFβ signals. Mol. Cell Biol.19, 424–430 (1999). Article Google Scholar
Wotton, D., Lo, R. S., Lee, S. & Massagué, J. A Smad transcriptional corepressor. Cell97, 29–39 (1999). ArticleCAS Google Scholar
Baker, J. & Harland, R. M. A novel mesoderm inducer, mMadr-2, functions in the activin signal transduction pathway. Genes Dev.10, 1880–1889 (1996). ArticleCAS Google Scholar
Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature381, 620–623 (1996). ArticleCAS Google Scholar
Hata, A., Lo, R. S., Wotton, D., Lagna, M. & Massagué, J. Mutations increasing autoinhibition inactivate the tumour suppressors Smad2 and Smad4. Nature388, 82–86 (1997). ArticleCAS Google Scholar
Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J.17, 7151–7160 (1998). ArticleCAS Google Scholar
Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell97, 427–430 (1999). ArticleCAS Google Scholar
Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science243, 1576–1583 (1989). ArticleCAS Google Scholar
Macias-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and phosphorylation is required for nuclear accumulation and signaling. Cell87, 1215–1224 (1996). ArticleCAS Google Scholar
Kretzschmar, M., Liu, F., Hata, A., Doody, J. & M assagué, J. The TGF-β mediator Smad1 is directly phosphorylated and functionally activated by the BMP receptor kinase. Genes Dev.11, 984–995 (1997). ArticleCAS Google Scholar
Spencer, E., Jiang, J. and Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev.13, 284–294 (1999). ArticleCAS Google Scholar
Gonen, H. et al. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation of subsequent degradation of IκBα. J. Biol. Chem.274, 14823–14830 (1999) ArticleCAS Google Scholar
Maniatis, T. A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev.13, 505–510 (1999). ArticleCAS Google Scholar
Zhu, H. et al. A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature400, 687–693 (1999). ArticleCAS Google Scholar
Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by ongenic ras. Genes Dev.13, 804–816 (1999). ArticleCAS Google Scholar
Lo, R. S., Chen, Y. G., Shi, Y. G., Pavletich, N. & Massagué, J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J17, 996–1005 (1998). ArticleCAS Google Scholar