Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system (original) (raw)

References

  1. Horvitz, H. R. & Herskowitz, I. Mechanisms in asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255 (1992).
    Article CAS Google Scholar
  2. Rappaport, R. Cytokinesis in Animal Cells (Cambridge Univ. Press, Cambridge, 1996).
  3. Strome, S. Determination of cleavage planes. Cell 72, 3–6 (1993).
    Article CAS Google Scholar
  4. Rappaport, R. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105, 245–281 (1986).
    Article CAS Google Scholar
  5. Albertson, D. Formation of the first cleavage spindle in nematode embryos. Dev. Biol. 101, 61–72 ( 1984).
    Article CAS Google Scholar
  6. Conklin, E. G. Effects of centrifugal force on the structure and development of the egg of Crepidula . J. Exp. Zool. 22, 311–419 (1917).
    Article Google Scholar
  7. Matsuzaki, F., Ohshiro, T., Ikeshima-Kataoka, H. & Izumi, H. Miranda localises Staufen and Prospero asymmetrically in mitotic neuroblasts and epithelial cells in early Drosophila embryogenesis. Development 125, 4089–4098 (1998).
    CAS PubMed Google Scholar
  8. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451– 465 (1991).
    Article CAS Google Scholar
  9. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941– 953 (1991).
    Article CAS Google Scholar
  10. Matsuzaki, F., Koisumi, K., Hama, C., Yoshioka, T. & Nabeshima, T. Cloning of the Drosophila prospero gene and its expression in ganglion mother cells. Biochem. Biophys. Res. Commun. 182, 1326–1332 ( 1992).
    Article CAS Google Scholar
  11. Spana, E. P. & Doe, C. Q. The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187– 3195 (1995).
    CAS PubMed Google Scholar
  12. Hyman, A. A. & White, J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105, 2123–2135 ( 1987).
    Article CAS Google Scholar
  13. Rappaport, R. Role of mitotic apparatus in furrow initiation. Ann. NY Acad. Sci. 582, 15–21 ( 1990).
    Article CAS Google Scholar
  14. Brand, A. H. GFP in Drosophila. Trends Genet. 11, 324–325 (1995).
    Article CAS Google Scholar
  15. Brand, A. GFP as a cell and development marker in the Drosophila nervous system. Methods Cell Biol. 58, 165–181 (1999).
    Article CAS Google Scholar
  16. Callaini, G. & Anselmi, F. Centrosome splitting during nuclear elongation in the Drosophila embryo. Exp. Cell Res. 178, 415–425 (1988).
    Article CAS Google Scholar
  17. Karr, T. L. & Alberts, B. M. Organization of the cytoskeleton in early Drosophila embryos. J. Cell Sci. 102, 1494–1509 (1986).
    Article CAS Google Scholar
  18. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Deletion analysis of the Drosophila Inscuteable protein reveals domains of cortical localization and asymmetric localization. Curr. Biol. 9, 155–158 (1999).
    Article CAS Google Scholar
  19. Tio, M., Zavortink, M., Yang, X. & Chia, W. A functional analysis of inscuteable and its role during Dorsophila asymmetric cell divisions. J. Cell Sci. 112, 1541– 1551 (1999).
    CAS PubMed Google Scholar
  20. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).
    Article CAS Google Scholar
  21. Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeletal adapter protein. Dev. Biol. 174, 65– 81 (1996).
    Article CAS Google Scholar
  22. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS Google Scholar
  23. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638 –640 (1995).
    Article CAS Google Scholar
  24. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 ( 1995).
    Article CAS Google Scholar
  25. Kellogg, D. R., Oegema, K., Raff, J., Schneider, K. & Alberts, B. M. CP60: a microtubule-associated protein that is localized to the centrosome in a cell-specific manner. Mol. Biol. Cell 6, 1673–1684 (1995).
    Article CAS Google Scholar
  26. Oegema, K., Whitfield, W. G. & Alberts, B. The cell cycle-dependent localization of the CP190 centrosomal protein is determined by the coordinate action of two separable domains. J. Cell Biol. 131, 1261–1273 (1995).
    Article CAS Google Scholar
  27. Whitfield, W. G., Chaplin, M. A., Oegema, K., Parry, H. & Glover, D. M. The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes. J. Cell Sci. 108, 3377–3387 (1995).
    CAS PubMed Google Scholar
  28. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).
    Article CAS Google Scholar
  29. Doe, C. Q. Spindle orientation and asymmetric localization in Drosophila: both Inscuteable? Cell 86, 695– 697 (1996).
    Article CAS Google Scholar
  30. Shaw, S. L., Yeh, E., Maddox, P., Salmon, E. D. & Bloom, K. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985– 994 (1997).
    Article CAS Google Scholar
  31. Vallen, E. A., Scherson, T. Y., Roberts, T., van Zee, K. & Rose, M. D. Asymmetric mitotic segregation of the yeast spindle pole body. Cell 69, 505 –515 (1992).
    Article CAS Google Scholar
  32. Keating, H. H. & White, J. G. Centrosome dynamics in early embryos of Caenorhabditis elegans. J. Cell Sci. 111, 3027–3033 (1998).
    CAS PubMed Google Scholar
  33. Oegema, K. & Mitchison, T. J. Rappaport rules: cleavage furrow induction in animal cells. Proc. Natl Acad. Sci. USA 94, 4817–4820 (1997).
    Article CAS Google Scholar
  34. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Sci. 142, 751–761 (1998).
    Article CAS Google Scholar
  35. Waddle, J. A., Cooper, J. A. & Waterston, R. H. Transient localized accumulation of actin in Caenorhabditis elegans blastomeres with oriented asymmetric division. Development 120, 2317–2328 ( 1994).
    CAS PubMed Google Scholar
  36. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8, 1110–1116 (1998).
    Article CAS Google Scholar
  37. Hyman, A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109, 1185–1193 (1989).
    Article CAS Google Scholar
  38. Vale, R. D. & Toyoshima, Y. Y. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459–469 ( 1988).
    Article CAS Google Scholar
  39. Schuldt, A. et al. Miranda mediates asymmetric protein and RNA localisation in the developing nervous system. Genes Dev. 12, 1847–1857 (1998).
    Article CAS Google Scholar
  40. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 ( 1993).
    CAS Google Scholar
  41. Robertson, H. M. et al. A stable source of P-element transposase in Drosophila melanogaster. Genetics 118, 461– 470 (1988).
    CAS PubMed PubMed Central Google Scholar
  42. Therrien, M. et al. KSR, a novel protein kinase required for RAS signal transduction . Cell 83, 879–888 (1995).
    Article CAS Google Scholar
  43. Dormand, E.-L. & Brand, A. H. Runt determines cell fates in the Drosophila embryonic CNS. Development 125, 1659–1667 ( 1998).
    CAS PubMed Google Scholar
  44. Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3523 (1997).
    CAS PubMed Google Scholar
  45. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the Wingless pathway. Cell 95, 1017 –1026 (1998).
    Article CAS Google Scholar
  46. Spradling, A. C. in Drosophila, a Practical Approach (ed. Roberts, D. B.) 175–198 (IRL, Oxford, 1986).
  47. Patel, N. H. in Drosophila melanogaster: Practical Uses in Cell and Molecular Biology Vol. 44 (eds Goldstein, L. S. B. & Fyrberg E. A.) 445–487 (Academic, San Diego, 1994).
    Google Scholar

Download references