Control of endodermal endocrine development by Hes-1 (original) (raw)

References

  1. Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T. & Edlund, H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385, 257–260 (1997).
    Article CAS Google Scholar
  2. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).
    Article CAS Google Scholar
  3. Sander, M. et al. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11, 1662–1673 (1997).
    Article CAS Google Scholar
  4. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386, 399–402 ( 1997).
    Article CAS Google Scholar
  5. St-Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. & Gruss, P. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 387, 406–409 (1997).
    Article CAS Google Scholar
  6. Sussel, L. et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development 125, 2213–2221 (1998).
    CAS PubMed Google Scholar
  7. Naya, F.J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in β2/Neurod-deficient mice. Genes Dev. 11, 2323–2334 (1997).
    Article CAS Google Scholar
  8. Borges, M. et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386, 852– 855 (1997).
    Article CAS Google Scholar
  9. Lee, J.E. et al. Conversion of Xenopus ectoderm into neurons by neurod, a basic helix-loop-helix protein. Science 268, 836 –844 (1995).
    Article CAS Google Scholar
  10. Cau, E., Gradwohl, G., Fode, C. & Guillemot, F. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621 (1997).
    CAS PubMed Google Scholar
  11. Guillemot, F. et al. Mammalian achaete-scute homolog-1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).
    Article CAS Google Scholar
  12. Lee, J.E. Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20 ( 1997).
    Article Google Scholar
  13. Ma, Q.F., Kintner, C. & Anderson, D.J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43– 52 (1996).
    Article CAS Google Scholar
  14. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770– 776 (1999).
    Article CAS Google Scholar
  15. Chitnis, A., Henrique, D., Lewis, J., Ishhorowicz, D. & Kintner, C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene-δ. Nature 375, 761–766 ( 1995).
    Article CAS Google Scholar
  16. de la Pompa, J. et al. Conservation of the notch signaling pathway in mammalian neurogenesis . Development 124, 1139– 1148 (1997).
    CAS PubMed Google Scholar
  17. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation . Nature 400, 877–881 (1999).
    Article CAS Google Scholar
  18. Jarriault, S. et al. Signalling downstream of activated mammalian notch. Nature 377, 355–358 ( 1995).
    Article CAS Google Scholar
  19. Jarriault, S. et al. Delta-1 activation of notch-1 signaling results in HES-1 transactivation . Mol. Cell. Biol. 18, 7423– 7431 (1998).
    Article CAS Google Scholar
  20. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. 2 mammalian helix loop helix factors structurally related to drosophila hairy and enhancer of split. Genes Dev. 6, 2620–2634 (1992).
    Article CAS Google Scholar
  21. Chen, H. et al. Conservation of the Drosophila lateral inhibition pathway in human lung cancer: a hairy-related protein (HES-1) directly represses achaete-scute homolog-1 expression. Proc. Natl Acad. Sci. USA 94, 5355–5360 (1997).
    Article CAS Google Scholar
  22. Ohsako, S., Hyer, J., Panganiban, G., Oliver, I. & Caudy, M. Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8 , 2743–2755 (1994).
    Article CAS Google Scholar
  23. Oellers, N., Dehio, M. & Knust, E. bHLH proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol. Gen. Genet. 244, 465–473 (1994).
    Article CAS Google Scholar
  24. Ishibashi, M. et al. Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central-nervous-system. EMBO J. 13, 1799–1805 ( 1994).
    Article CAS Google Scholar
  25. Ishibashi, M. et al. Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural-tube defects. Genes Dev. 9, 3136–3148 ( 1995).
    Article CAS Google Scholar
  26. Ohtsuka, T. et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation . EMBO J. 18, 2196–2207 (1999).
    Article CAS Google Scholar
  27. Jensen, J. et al. Independent development of pancreatic a- and b-cells from Neurogenin-3 expressing precursors. Diabetes (in press).
  28. Wessells, N.K. & Cohen, J.H. Early pancreas morphogenesis: morphogenesis, tissue interations, and mass effects. Dev. Biol. 15, 237–270 ( 1967).
    Article CAS Google Scholar
  29. Øster, A. et al. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx6.1). J. Histochem. Cytochem. 46, 707–715 (1998).
    Article Google Scholar
  30. Offield, M.F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).
    CAS PubMed Google Scholar
  31. Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S. & Kageyama, R. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system . J. Biol. Chem. 270, 8730– 8738 (1995).
    Article CAS Google Scholar
  32. Naya, F.J., Stellrecht, C.M. & Tsai, M.J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009–1019 ( 1995).
    Article CAS Google Scholar
  33. Sommer, L., Ma, Q.F. & Anderson, D.J. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor-cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).
    Article CAS Google Scholar
  34. Larsson, L.I., St-Onge, L., Hougaard, D.M., Sosa-Pineda, B. & Gruss, P. Pax4 and 6 regulate gastrointestinal endocrine cell development. Mech. Dev. 79, 153–159 (1998).
    Article CAS Google Scholar
  35. Kaestner, K.H., Silberg, D.G., Traber, P.G. & Schutz, G. The mesenchymal winged helix transcription factor fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev. 11, 1583–1595 (1997).
    Article CAS Google Scholar
  36. Pabst, O., Schneider, A., Brand, T. & Arnold, H.H. The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during prenatal and postnatal mouse development. Dev. Dyn. 209, 29– 35 (1997).
    Article CAS Google Scholar
  37. Robb, L. et al. Epicardin—a novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev. Dyn. 213, 105–113 (1998).
    Article CAS Google Scholar
  38. Edlund, H. Transcribing pancreas. Diabetes 47, 1817 –1823 (1998).
    Article CAS Google Scholar
  39. Fisher, A. & Caudy, M. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 20, 298–306 (1998).
    Article CAS Google Scholar
  40. Valsecchi, V., Ghezzi, C., Ballabio, A. & Rugarli, E.I. Jagged2—a putative notch ligand expressed in the apical ectodermal ridge and in sites of epithelial-mesenchymal interactions. Mech. Dev. 69, 203–207 (1997).
    Article CAS Google Scholar
  41. Beckers, J., Clark, A., Wunsch, K., De-Angelis, M.H. & Gossler, A. Expression of the mouse Delta1 gene during organogenesis and fetal development. Mech. Dev. 84, 165 –168 (1999).
    Article CAS Google Scholar
  42. Mitsiadis, T.A., Henrique, D., Thesleff, I. & Lendahl, U. Mouse serrate-1 (jagged-1)—expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-iv. Development 124, 1473–1483 (1997).
    CAS PubMed Google Scholar
  43. Barbash, D.A. & Cline, T.W. Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster. Genetics 141, 1451– 1471 (1995).
    CAS PubMed PubMed Central Google Scholar
  44. Deshpande, G., Stukey, J. & Schedl, P. Scute (sis-b) function in Drosophila sex determination . Mol. Cell. Biol. 15, 4430– 4440 (1995).
    Article CAS Google Scholar
  45. Parkhurst, S.M., Bopp, D. & Ish-Horowicz, D. X:A ratio, the primary sex-determining signal in Drosophila, is transduced by helix-loop-helix proteins. Cell 63 , 1179–1191 (1990).
    Article CAS Google Scholar
  46. Pictet, R. & Rutter, W.J. in Handbook of Physiology, Section 7: Endocrinology, Volume 1 (eds Steiner, D.F. & Freinkel, N.) 25–66 (American Physiological Society, Washington DC, 1972).
    Google Scholar
  47. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. in Manipulating the Mouse Embryo 303–304 (Cold Spring Harbor Laboratory Press, New York, 1994).
    Google Scholar
  48. Jensen, J., Serup, P., Karlsen, C., Nielsen, T.F. & Madsen, O.D. mRNA profiling of rat islet tumors reveals Nkx6.1 as a β-cell-specific homeodomain transcription factor. J. Biol. Chem. 271, 18749–18758 (1996).
    Article CAS Google Scholar

Download references