Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation (original) (raw)

References

  1. Wang, Z.Q. et al. Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745 ( 1992).
    Article CAS Google Scholar
  2. Johnson, R.S., Spiegelman, B.M. & Papaioannou, V. Pleiotropic effects of a null mutation in the c- fos proto-oncogene. Cell 71, 577– 586 (1992).
    Article CAS Google Scholar
  3. Grigoriadis, A.E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443– 448 (1994).
    Article CAS Google Scholar
  4. Wisdon, R. & Verma, I.M. Transformation by Fos proteins requires a C-terminal transactivation domain. Mol. Cell. Biol. 13, 7429–7438 (1993).
    Article CAS Google Scholar
  5. Jooss, K.U., Funk, M. & Müller, R. An autonomous N-terminal transactivation domain in Fos protein plays a crucial role in transformation. EMBO J. 13, 1467–1475 (1994).
    Article CAS Google Scholar
  6. Funk, M., Poensgen, B., Graulich, W., Jerome, V. & Müller, R. A novel, transformation-relevant activation domain in Fos proteins. Mol. Cell. Biol. 17, 537–544 (1997).
    Article CAS Google Scholar
  7. Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Busslinger, M. Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron . Mol. Cell. Biol. 15, 3748– 3758 (1995).
    Article CAS Google Scholar
  8. Wong, B.R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).
    Article CAS Google Scholar
  9. Anderson, D.M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).
    Article CAS Google Scholar
  10. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 ( 1998).
    Article CAS Google Scholar
  11. Lacey, D.L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).
    Article CAS Google Scholar
  12. Kustikova, O. et al. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol. Cell. Biol. 18, 7095–7105 (1998).
    Article CAS Google Scholar
  13. Grigoriadis, A.E., Schellander, K., Wang, Z.Q. & Wagner, E.F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685–701 (1993).
    Article CAS Google Scholar
  14. Sutherland, J.A., Cook, A., Bannister, A.J. & Kouzarides, T. Conserved motifs in Fos and Jun define a new class of activation domain. Genes Dev. 6, 1810–1819 (1992).
    Article CAS Google Scholar
  15. Metz, R. et al. c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol. Cell. Biol. 14, 6021–6029 ( 1994).
    Article CAS Google Scholar
  16. Metz, R., Kouzarides, T. & Bravo, R. A C-terminal domain in FosB, absent in FosB/SF and Fra-1, which is able to interact with the TATA binding protein, is required for altered cell growth. EMBO J. 13, 3832– 3842 (1994).
    Article CAS Google Scholar
  17. Wisdom, R., Yen, J., Rashid, D. & Verma, I.M. Transformation by FosB requires a trans-activation domain missing in FosB2 that can be substituted by heterologous activation domains. Genes Dev. 6, 667–675 (1992).
    Article CAS Google Scholar
  18. Oliviero, S., Robinson, G.S., Struhl, K. & Spiegelman, B.M. Yeast GCN4 as a probe for oncogenesis by AP-1 transcription factors: transcriptional activation through AP-1 sites is not sufficient for cellular transformation . Genes Dev. 6, 1799–1809 (1992).
    Article CAS Google Scholar
  19. Wrighton, C. & Busslinger, M. Direct transcriptional stimulation of the ornithine decarboxylase gene by Fos in PC12 cells but not in fibroblasts . Mol. Cell. Biol. 13, 4657– 4669 (1993).
    Article CAS Google Scholar
  20. Owens, J.M., Matsuo, K., Nicholson, G.C., Wagner, E.F. & Chambers, T.J. Fra-1 potentiates osteoclastic differentiation in osteoclast-macrophage precursor cell lines. J. Cell. Physiol. 179, 170–178 (1999).
    Article CAS Google Scholar
  21. Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA 96, 3540– 3545 (1999).
    Article CAS Google Scholar
  22. Russell, R.G.G. & Rogers, M.J. Bisphosphonates: from the laboratory to the clinic and back again. Bone 25, 97–106 (1999).
    Article CAS Google Scholar
  23. Schreiber, M. et al. Structure and chromosomal assignment of the mouse fra-1 gene, and its exclusion as a candidate gene for oc (osteosclerosis). Oncogene 15, 1171–1178 ( 1997).
    Article CAS Google Scholar
  24. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397 , 315–323 (1999).
    Article CAS Google Scholar
  25. Dougall, W.C. et al. RANK is essential for osteoclast and lymph node development . Genes Dev. 13, 2412–2424 (1999).
    Article CAS Google Scholar
  26. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).
    Article CAS Google Scholar
  27. Chambers, T.J., Owens, J.M., Hattersley, G., Jat, P.S. & Noble, M.D. Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse. Proc. Natl Acad. Sci. USA 90, 5578– 5582 (1993).
    Article CAS Google Scholar
  28. Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W. & Deetz, K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4, 357–362 (1995).
    Article CAS Google Scholar
  29. Brown, H.J., Sutherland, J.A., Cook, A., Bannister, A.J. & Kouzarides, T. An inhibitor domain in c-Fos regulates activation domains containing the HOB1 motif. EMBO J. 14, 124–131 ( 1995).
    Article CAS Google Scholar
  30. Gius, D. et al. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol. Cell. Biol. 10, 4243– 4255 (1990).
    Article CAS Google Scholar

Download references