Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1 (original) (raw)
References
Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature349, 257–260 (1991). ArticleCAS Google Scholar
Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1− embryonic stem cells . Genes Dev.8, 1184–1197 (1994). ArticleCAS Google Scholar
Fujiwara, Y., Browne, C.P., Cunniff, K., Goff, S.C. & Orkin, S.H. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl Acad. Sci. USA93, 12355– 12358 (1996). ArticleCAS Google Scholar
Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A. & Orkin, S.H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J.16, 3965–3973 ( 1997). ArticleCAS Google Scholar
Tsai, S.F. et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature339, 446–451 (1989). ArticleCAS Google Scholar
Evans, T. & Felsenfeld, G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell58, 877–885 (1989). ArticleCAS Google Scholar
Orkin, S.H. GATA-binding transcription factors in hematopoietic cells. Blood80, 575–581 ( 1992). CASPubMed Google Scholar
Weiss, M.J. & Orkin, S.H. GATA transcription factors: key regulators of hematopoiesis. Exp. Hematol.23, 99–107 (1995). CAS Google Scholar
Tsang, A.P. et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation . Cell90, 109–119 (1997). ArticleCAS Google Scholar
Tsang, A.P., Fujiwara, Y., Hom, D.B. & Orkin, S.H. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev.12, 1176– 1188 (1998). ArticleCAS Google Scholar
Fox, A.H., Kowalski, K., King, G.F., Mackay, J.P. & Crossley, M. Key residues characteristic of GATA N-fingers are recognized by FOG. J. Biol. Chem.273, 33595– 33603 (1998). ArticleCAS Google Scholar
Crispino, J.D., Lodish, M.B., MacKay, J.P. & Orkin, S.H. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell3, 219–228 (1999). ArticleCAS Google Scholar
White, J.G. Use of the electron microscope for diagnosis of platelet disorders. Semin. Thromb. Hemost.24, 163–168 (1998). ArticleCAS Google Scholar
McDevitt, M.A., Shivdasani, R.A., Fujiwara, Y., Yang, H. & Orkin, S.H. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc. Natl Acad. Sci. USA94, 6781–6785 (1997). ArticleCAS Google Scholar
Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H. & Shivdasani, R.A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood93, 2867– 2875 (1999). CASPubMed Google Scholar
Kowalski, K., Czolij, R., King, G.F., Crossley, M. & Mackay, J.P. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG. J. Biomol. NMR13, 249– 262 (1999). ArticleCAS Google Scholar
Fox, A.H. et al. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J.18, 2812–2822 (1999). ArticleCAS Google Scholar
Martin, D.I.K. & Orkin, S.H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev.4, 1886–1898 (1990). ArticleCAS Google Scholar
Yang, H.-Y. & Evans, T. Distinct roles for the two cGATA-1 fingers. Mol. Cell. Biol.12, 4562– 4570 (1992). ArticleCAS Google Scholar
Trainor, C.D. et al. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol. Cell. Biol.16, 2238– 2247 (1996). ArticleCAS Google Scholar
Gregory, T. et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood94, 87–96 (1999). CASPubMed Google Scholar
Weiss, M.J. & Orkin, S.H. Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc. Natl Acad. Sci. USA92, 9623– 9627 (1995). ArticleCAS Google Scholar
Yomogida, K. et al. Developmental stage- and spermatogenic cycle-specific expression of the transcription factor GATA-1 in mouse Sertoli cells. Development120, 1759–1766 ( 1994). CASPubMed Google Scholar
Viger, R.S., Mertineit, C., Trasler, J.M. & Nemer, M. Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development125, 2665 –2675 (1998). CASPubMed Google Scholar
Hutson, J.M., Baker, M., Terada, M., Zhou, B. & Paxton, G. Hormonal control of testicular descent and the cause of cryptorchidism. Reprod. Fertil. Dev.6, 151–156 (1994). ArticleCAS Google Scholar
Thompson, A.R., Wood, W.G. & Stamatoyannopoulos, G. X-linked syndrome of platelet dysfunction, thrombocytopenia, and imbalanced globin chain synthesis with hemolysis. Blood50, 303–316 (1977). CASPubMed Google Scholar
Weiss, M.J., Yu, C. & Orkin, S.H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell. Biol.17, 1642–1651 ( 1997). ArticleCAS Google Scholar