NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome (original) (raw)
Olson, J.L. & Schwartz, M.M. The nephrotic syndrome: minimal change disease, focal segmental glomerulosclerosis, and miscellaneous causes . in Heptinstall's Pathology of the Kidney (eds Jennette, J.C., Olson, J.L. & Silva, F.G.) 187–257 (Lippincott-Raven, Philadelphia, 1998). Google Scholar
Broyer, M., Meyrier, A., Niaudet, P. & Habib, R. Minimal changes and focal segmental glomerular sclerosis. in Oxford Textbook of Clinical Nephrology (eds Davison, A.M. et al.) 493– 535 (Oxford University Press, Oxford, 1998). Google Scholar
Kestilä, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell1, 575–582 (1998). Article Google Scholar
Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl Acad. Sci. USA96, 7962–7967 (1999). ArticleCAS Google Scholar
Holthofer, H. et al. Nephrin localizes at the podocyte filtration slit area and is characteristically spliced in the human kidney. Am. J. Pathol.155, 1681–1687 ( 1999). ArticleCAS Google Scholar
Holzman, L.B. et al. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int.56, 1481– 1491 (1999). Article Google Scholar
Mathis, B.J. et al. A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19q13. Kidney Int.53, 282 –286 (1998). ArticleCAS Google Scholar
Winn, M.P. et al. Linkage of a gene causing familial focal segmental glomerulosclerosis to chromosome 11 and further evidence of genetic heterogeneity. Genomics58, 113–120 ( 1999). ArticleCAS Google Scholar
Fuchshuber, A. et al. Mapping a gene (SRN1) to chromosome 1q25–q31 in idiopathic nephrotic syndrome confirms a distinct entity of autosomal recessive nephrosis. Hum. Mol. Genet.4, 2155– 2158 (1995). ArticleCAS Google Scholar
Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature380, 152– 154 (1996). ArticleCAS Google Scholar
Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome7, 563–574 (1996). ArticleCAS Google Scholar
Prestridge, D.S. Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249, 923– 932 (1995). ArticleCAS Google Scholar
Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1995. Nucleic Acids Res.24, 189–196 (1996). ArticleCAS Google Scholar
Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics14, 897–911 (1992). ArticleCAS Google Scholar
Snyers, L., Umlauf, E. & Prohaska, R. Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett. 449, 101–104 (1999). ArticleCAS Google Scholar
Stewart, G.W. et al. Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+, low K+ stomatocytic erythrocytes. Blood79, 1593–1601 (1992). CASPubMed Google Scholar
Huang, M., Gu, G., Ferguson, E.L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature378, 292–295 (1995). ArticleCAS Google Scholar
Mannsfeldt, A.G., Carroll, P., Stucky, C.L. & Lewin, G.R. Stomatin, a MEC-2 like protein, is expressed by mammalian sensory neurons. Mol. Cell. Neurosci.13, 391– 404 (1999). ArticleCAS Google Scholar
Salzer, U., Ahorn, H. & Prohaska, R. Identification of the phosphorylation site on human erythrocyte band 7 integral membrane protein: implications for a monotopic protein structure. Biochim. Biophys. Acta.1151, 149–152 (1993). ArticleCAS Google Scholar
Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J. Biol. Chem.273, 17221– 17226 (1998). ArticleCAS Google Scholar
Engelman, J.A., Zhang, X.L., Razani, B., Pestell, R.G. & Lisanti, M.P. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. J. Biol. Chem.274, 32333–32341 (1999). ArticleCAS Google Scholar
Shih, N.Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science286, 312– 315 (1999). ArticleCAS Google Scholar
Kirsch, K.H., Georgescu, M.M., Ishimaru, S. & Hanafusa, H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc. Natl Acad. Sci. USA96, 6211– 6216 (1999). ArticleCAS Google Scholar
Noakes, P.G. et al. The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nature Genet.10, 400–406 ( 1995). ArticleCAS Google Scholar
Parving, H.H. et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int.41, 758– 762 (1992). ArticleCAS Google Scholar
Connolly, J.O., Weston, C.E. & Hendry, B.M. HIV-associated renal disease in London hospitals. Q. J. Med.88, 627–634 (1995). CAS Google Scholar
Verani, R.R. Obesity-associated focal segmental glomerulosclerosis: pathological features of the lesion and relationship with cardiomegaly and hyperlipidemia. Am. J. Kidney Dis.20, 629–634 (1992). ArticleCAS Google Scholar
Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet.6, 84–89 (1994). ArticleCAS Google Scholar
Trask, B.J. et al. Characterization of somatic cell hybrids by bivariate flow karyotyping and fluorescence in situ hybridization. Somat. Cell Mol. Genet.17, 117–136 (1991). ArticleCAS Google Scholar
Town, M. et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genet.18, 319–324 (1998). ArticleCAS Google Scholar
Li, B.L. et al. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J. Biol. Chem.274, 11060– 11071 (1999). ArticleCAS Google Scholar
Brandenberger, A.W., Tee, M.K., Lee, J.Y., Chao, V. & Jaffe, R.B. Tissue distribution of estrogen receptors α (ER-α) and β (ER-β) mRNA in the midgestational human fetus. J. Clin. Endocrinol. Metab.82, 3509– 3512 (1997). CASPubMed Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 ( 1990). ArticleCAS Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). ArticleCAS Google Scholar
Fuchshuber, A. et al. Presymptomatic diagnosis of familial steroid-resistant nephrotic syndrome. Lancet347, 1050– 1051 (1996). ArticleCAS Google Scholar
Sibony, M., Commo, F., Callard, P. & Gasc, J.M. Enhancement of mRNA in situ hybridization signal by microwave heating. Lab. Invest.73, 586–591 (1995). CASPubMed Google Scholar
Kalatzis, V., Sahly, I., El-Amraoui, A. & Petit, C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Dev. Dyn.213, 486–499 ( 1998). ArticleCAS Google Scholar
Heidet, L. et al. Diffuse leiomyomatosis associated with X-linked Alport syndrome: extracellular matrix study using immunohistochemistry and in situ hybridization. Lab. Invest.76, 233–243 (1997). CASPubMed Google Scholar
Antonarakis, S.E. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum. Mutat.11, 1– 3 (1998). ArticleCAS Google Scholar
Kaplan, J.M. et al. Mutations in ACTN4, encoding a-actinin 4, cause familial focal segmental glomerulosclerosis. Nature Genet.64, 251–256 (2000). Article Google Scholar