Heterogeneous mutation processes in human microsatellite DNA sequences (original) (raw)

References

  1. Bowcock, A.M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).
    Article CAS Google Scholar
  2. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).
    Article CAS Google Scholar
  3. Ellegren, H., Lindgren, G., Primmer, C.R. & Møller, A.P. Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature 389, 393–396 (1997).
    Article Google Scholar
  4. Hamada, H., Petrino, M.G. & Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl Acad. Sci. USA 79, 6465–6469 (1982).
    Article CAS Google Scholar
  5. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).
  6. Weber, J.L. & Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).
    Article CAS Google Scholar
  7. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J. & Rolf, B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).
    Article CAS Google Scholar
  8. Primmer, C.R., Ellegren, H., Saino, N. & Møller, A.P. Directional evolution in germline microsatellite mutations. Nature Genet. 13, 391–393 (1996).
    Article CAS Google Scholar
  9. Farrall, M. & Weeks, D.E. Mutational mechanisms for generating microsatellite allele-frequency distributions: an analysis of 4,558 markers. Am. J. Hum. Genet. 62, 1260–1262 (1998).
    Article CAS Google Scholar
  10. Weber, J.L. Informativeness of human (dC-dA)n·(dG-dT)n polymorphisms. Genomics 7, 524–530 (1990).
    Article CAS Google Scholar
  11. Rubinsztein, D.C. et al. Microsatellite evolution-evidence for directionality and variation in rate between species. Nature Genet. 10, 337–343 (1995).
    Article CAS Google Scholar
  12. Amos, W., Sawcer, S.J., Feakes, R.W. & Rubinsztein, D.C. Microsatellites show mutational bias and heterozygote instability. Nature Genet. 13, 390–391 (1996).
    Article CAS Google Scholar
  13. Ellegren, H., Primmer, C.R. & Sheldon, B.C. Microsatellite evolution: directionality or bias? Nature Genet. 11, 360–362 (1995).
    Article CAS Google Scholar
  14. Schlotterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215 (1992).
    Article CAS Google Scholar
  15. Chakraborty, R., Kimmel, M., Stivers, D.N., Davison, L.J. & Deka, R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl Acad. Sci. USA 94, 1041–1046 (1997).
    Article CAS Google Scholar
  16. Jones, A.G., Rosenqvist, G., Berglund, A. & Avise, J.C. Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 152, 1057–1063 (1999).
    CAS PubMed PubMed Central Google Scholar
  17. Primmer, C.R., Saino, N., Møller, A.P. & Ellegren, H. Unravelling the process of microsatellite evolution through analysis of germline mutations in barn swallows. Mol. Biol. Evol. 15, 1047–1054 (1998).
    Article CAS Google Scholar
  18. Wierdl, M., Dominska, M. & Petes, T.D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146, 769–779 (1997).
    CAS PubMed PubMed Central Google Scholar
  19. Hurst, L.D. & Ellegren, H. Sex biases in the mutation rate. Trends Genet. 14, 446–452 (1998).
    Article CAS Google Scholar
  20. Miyata, T., Hayashida, H., Kuma, K., Mitsuyasa, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).
    Article CAS Google Scholar
  21. Shimmin, L.C., Chang, B.H.J. & Li, W.-H. Male-driven evolution of DNA sequences. Nature 362, 745–747 (1993).
    Article CAS Google Scholar
  22. McVean, G.T. & Hurst, L.D. Evidence for a selectively favourable reduction in the mutation rate of the X-chromosome. Nature 386, 388–392 (1997).
    Article CAS Google Scholar
  23. Crow, J.F. Molecular evolution—who is in the driver's seat? Nature Genet. 17, 129–130 (1997).
    Article CAS Google Scholar
  24. Ellegren, H. & Fridolfsson, A.K. Male-driven evolution of DNA sequences in birds. Nature Genet. 17, 182–184 (1997).
    Article CAS Google Scholar
  25. Vogel, F. & Motulsky, A.G. Human Genetics (Springer, Berlin, 1997).
  26. Crow, J.F. The high spontaneous mutation rate: is it a health risk? Proc. Natl Acad. Sci. USA 94, 8380–8386 (1997).
    Article CAS Google Scholar
  27. Smith, N.G. & Hurst, L.D. The causes of synonymous rate variation in the rodent genome. Can substitution rates be used to estimate the sex bias in mutation rate? Genetics 152, 661–673 (1999).
    CAS PubMed PubMed Central Google Scholar
  28. El-Maarri, O. et al. Methylation at selected CpG sites in the Factor VIII and FGFR3 genes, in mature female and male germ cells: implications for male-driven evolution. Am. J. Hum. Genet. 63, 1001–1008 (1998)
    Article CAS Google Scholar
  29. Banchs, I. et al. New alleles at microsatellite loci in CEPH families mainly arise from somatic mutations in the lymphoblastoid cell lines. Hum. Mutat. 3, 365–372 (1994).
    Article CAS Google Scholar
  30. Farber, R.A., Petes, T.D., Dominska, M., Hudgens, S. & Liskay, R.M. Instability of simple sequences in a mammalian cell line. Hum. Mol. Genet. 3, 253–256 (1994).
    Article CAS Google Scholar

Download references