A genetic system for detection of protein nuclear import and export (original) (raw)

References

  1. Garcia-Bustos, J., Heitman, J. & Hall, M.N. Nuclear protein localization. Biochim. Biophys. Acta 1071, 83–101 (1991).
    Article CAS Google Scholar
  2. Dingwall, C. Transport across the nuclear envelope: enigmas and explanations. BioEssays 13, 213–218 (1991).
    Article CAS Google Scholar
  3. Pollard, V.W. & Malim, M.H. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491–532 (1998).
    Article CAS Google Scholar
  4. Dobbelstein, M., Roth, J., Kimberly, W.T., Levine, A.J. & Shenk, T. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 16, 4276–4284 (1997).
    Article CAS Google Scholar
  5. Ullman, K.S., Powers, M.A. & Forbes, D.J. Nuclear export receptors: from importin to exportin. Cell 90, 967–970 (1997).
    Article CAS Google Scholar
  6. Varagona, M.J., Schmidt, R.J. & Raikhel, N.V. Monocot regulatory protein Opaque-2 is localized in the nucleus of maize endosperm and transformed tobacco plants. Plant Cell 3, 105–113 (1991).
    Article CAS Google Scholar
  7. Citovsky, V., Zupan, J., Warnick, D. & Zambryski, P. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256, 1803–1805 (1992).
    Article Google Scholar
  8. Guralnick, B., Thomsen, G. & Citovsky, V. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 8, 363–373 (1996).
    Article CAS Google Scholar
  9. Goldfarb, D.S., Gariepy, J., Schoolnik, G. & Kornberg, R.D. Synthetic peptides as nuclear localization signals. Nature 322, 641–644 (1986).
    Article CAS Google Scholar
  10. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).
    Article CAS Google Scholar
  11. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).
    Article CAS Google Scholar
  12. Roberts, B.L., Richardson, W.D. & Smith, A.E. The effect of protein context on nuclear location signal function. Cell 50, 465–475 (1987).
    Article CAS Google Scholar
  13. Michael, W.M., Choi, M. & Dreyfuss, G. A nuclear export signal in hnRNP A1: a signal-mediated temperature-dependent nuclear protein export pathway. Cell 83, 415–422 (1995).
    Article CAS Google Scholar
  14. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141–144 (1997).
    Article CAS Google Scholar
  15. Schlenstedt, G., Hurt, E., Doye, V. & Silver, P. Reconstitution of nuclear protein transport with semi-intact yeast cells. J. Cell Biol. 123, 785–798 (1993).
    Article CAS Google Scholar
  16. Newmeyer, D.D. & Forbes, D.J. Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52, 641–653 (1988).
    Article CAS Google Scholar
  17. Ballas, N. & Citovsky, V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl. Acad. Sci. USA 94, 10723–10728 (1997).
    Article CAS Google Scholar
  18. Silver, P.A., Chiang, A. & Sadler, I. Mutations that alter both localization and production of a yeast nuclear protein. Genes Dev. 2, 707–717 (1988).
    Article CAS Google Scholar
  19. Citovsky, V., Warnick, D. & Zambryski, P. Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc. Natl. Acad. Sci. USA 91, 3210–3214 (1994).
    Article CAS Google Scholar
  20. Howard, E., Zupan, J., Citovsky, V. & Zambryski, P. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109–118 (1992).
    Article CAS Google Scholar
  21. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences–a consensus? Trends Biochem. Sci. 16, 478–481 (1991).
    Article CAS Google Scholar
  22. Lazarowitz, S.G. & Beachy, R.N. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548 (1999).
    Article CAS Google Scholar
  23. Ghoshroy, S., Lartey, R., Sheng, J. & Citovsky, V. Transport of proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 27–49 (1997).
    Article CAS Google Scholar
  24. Malim, M.H., Bohnlein, S., Hauber, J. & Cullen, B.R. Functional dissection of the HIV-1 Rev trans-activator-derivation of a _trans_-dominant repressor of Rev function. Cell 58, 205–214 (1989).
    Article CAS Google Scholar
  25. Taagepera, S. et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc. Natl. Acad. Sci. USA 95, 7457–7462 (1998).
    Article CAS Google Scholar
  26. Bogerd, H.P., Fridell, R.A., Benson, R.E., Hua, J. & Cullen, B.R. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol. Cell. Biol. 16, 4207–4214 (1996).
    Article CAS Google Scholar
  27. Winans, S.C., Mantis, N.J., Chen, C.Y., Chang, C.H. & Han, D.C. Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Res. Microbiol. 145, 461–473 (1994).
    Article CAS Google Scholar
  28. Staswick, P.E. Novel regulation of vegetative storage protein genes. Plant Cell 2, 1–6 (1990).
    Article CAS Google Scholar
  29. Davies, J.W. & Stanley, J. Geminivirus genes and vectors. Trends Genet. 5, 77–81 (1989).
    Article CAS Google Scholar
  30. Navot, N., Pichersky, E., Zeidan, M., Zamir, D. & Czosnek, H. Tomato yellow leaf curl virus: a whitefly transmitted geminivirus with a single genomic component. Virology 185, 151–161 (1991).
    Article CAS Google Scholar
  31. Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V. & Gafni, Y. Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399 (1998).
    Article CAS Google Scholar
  32. Zervos, A.S., Gyuris, J. & Brent, R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72, 223–232 (1993).
    Article CAS Google Scholar
  33. Hollenberg, S.M., Sternglanz, R., Cheng, P.F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).
    Article CAS Google Scholar
  34. Vidal, M., Brachmann, R.K., Fattaey, A., Harlow, E. & Boeke, J.D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein–protein and DNA–protein interactions. Proc. Natl. Acad. Sci. USA 93, 10315–10320 (1996).
    Article CAS Google Scholar
  35. Cullen, B.R. et al. Subcellular localization of the human immunodeficiency virus _trans_-acting art gene product. J. Virol. 62, 2498–2501 (1988).
    CAS PubMed PubMed Central Google Scholar
  36. Fischer, U. et al. Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13, 4105–4112 (1994).
    Article CAS Google Scholar
  37. Ueki, N. et al. Selection system for genes encoding nuclear-targeted proteins. Nat. Biotechnol. 16, 1338–1342 (1998).
    Article CAS Google Scholar
  38. Nigg, E.A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 (1997).
    Article CAS Google Scholar
  39. Truant, R., Fridell, R.A., Benson, R.E., Bogerd, H. & Cullen, B.R. Identification and functional characterization of a novel nuclear localization signal present in the yeast Nab2 poly(A)+ RNA binding protein. Mol. Cell. Biol. 18, 1449–1458 (1998).
    Article CAS Google Scholar
  40. Rosenblum, J.S., Pemberton, L.F., Bonifaci, N. & Blobel, G. Nuclear import and the evolution of a multifunctional RNA-binding protein. J. Cell Biol. 143, 887–899 (1998).
    Article CAS Google Scholar
  41. Kaiser, C., Michaelis, S. & Mitchell, A. Methods in yeast genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994).
    Google Scholar
  42. Citovsky, V., De Vos, G. & Zambryski, P. Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240, 501–504 (1988).
    Article CAS Google Scholar
  43. Jefferson, R.A., Burgess, S.M. & Hirsh, D. β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451 (1986).
    Article CAS Google Scholar
  44. Goelet, P. et al. Nucleotide sequence of tobacco mosaic virus RNA. Proc. Natl. Acad. Sci. USA 79, 5818–5822 (1982).
    Article CAS Google Scholar
  45. Winans, S.C., Ebert, P.R., Stachel, S.E., Gordon, M.P. & Nester, E.W. A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83, 8278–8282 (1986).
    Article CAS Google Scholar
  46. Staswick, P.E. Soybean vegetative storage protein structure and gene expression. Correction. Plant Physiol. 89, 717 (1988).
  47. Staswick, P.E. Soybean vegetative storage protein structure and gene expression. Plant Physiol. 87, 250–254 (1988).
    Article CAS Google Scholar
  48. Stachel, S.E., An, G., Flores, C. & Nester, E.W. A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J. 4, 891–898 (1985).
    Article CAS Google Scholar

Download references