HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine (original) (raw)
References
Craig, E.A. & Gross, C.A. Is hsp70 the cellular thermometer? Trends Biochem. Sci.16, 135–40 (1991). ArticleCAS Google Scholar
Lindquist, S. & Craig, E.A. The heat-shock proteins. Annu. Rev. Genet.22, 631–77 (1988). ArticleCAS Google Scholar
Calderwood, S.K. in Proceedings of the 86th Annual Meeting of the American Association for Cancer Research682, (American Association for Cancer Research, Philadelphia, Pennsylvania, 1995). Google Scholar
Minota, S., Cameron, B., Welch, W. J. & Winfield, J. B. Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J. Exp. Med.168, 1475–1480 (1988). ArticleCAS Google Scholar
Schletter, J., Heine, H., Ulmer, A.J. & Rietschel, E. T. Molecular mechanisms of endotoxin activity. Arch. Microbiol.164, 383–389 (1995). ArticleCAS Google Scholar
Housby, J.N. et al. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce hsp70 in human monocytes. Cytokine11, 347–358 (1999). ArticleCAS Google Scholar
Golenbock, D.T., Hampton, R.Y., Qureshi, N., Takayama, K. & Raetz, C.R. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem.266, 19490–19498 (1991). CAS Google Scholar
Duff, G. W. & Atkins, E. The inhibitory effect of polymyxin B on endotoxin-induced endogenous pyrogen production. J. Immunol. Methods52, 333–340 (1982). ArticleCAS Google Scholar
Ghosh, S., May, M.J. & Kopp, E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). ArticleCAS Google Scholar
Baeuerle, P.A. & Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science242, 540–546 (1988). ArticleCAS Google Scholar
Beg, A.A. & Baldwin, A.S. Jr. The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev.7, 2064–2070 (1993). ArticleCAS Google Scholar
Stevenson, M.A., Zhao, M.-J., Asea, A., Coleman, N.C. & Calderwood, S.K. Salicylic acid and asprin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of CREB and NF-κB responsive genes. J. Immunol.163, 5608–5616 (1999). CASPubMed Google Scholar
Rollins, B.J., Walz, A. & Baggiolini, M. Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood78, 1112–1116 (1991). CASPubMed Google Scholar
McLeish, K.R., Dean, W.L., Wellhausen, S.R. & Stelzer, G.T. Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. Inflammation13, 681–692 (1989). ArticleCAS Google Scholar
Ulevitch, R.J. & Tobias, P.S. Recognition of endotoxin by cells leading to transmembrane signaling. Curr. Opin. Immunol.6, 125–130 (1994). ArticleCAS Google Scholar
Tapping, R.I., Orr, S.L., Lawson, E.M., Soldau, K. & Tobias, P.S. Membrane-anchored forms of lipopolysaccharide (LPS)-binding protein do not mediate cellular responses to LPS independently of CD14. J. Immunol.162, 5483–5489 (1999). CASPubMed Google Scholar
Solomon, K.R. et al. Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J. Clin. Invest.102, 2019–2027 (1998). ArticleCAS Google Scholar
Arnold-Schild, D. et al. Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757–3760 (1999). CASPubMed Google Scholar
Kaufmann, S.H.E. & Schoel, B. in The Biology of Heat Shock Proteins and Molecular Chaperones (eds. Morimoto, R. I., Tissieres, A. & Georgopoulos, C.) 495–531 (Cold Spring Harbor Laboratory, Plainview, New York, 1994). Google Scholar
Haregewoin, A., Soman, G., Hom, R.C. & Finberg, R.W. Human gamma delta+ T cells respond to mycobacterial heat-shock protein. Nature340, 309–312 (1989). ArticleCAS Google Scholar
Haregewoin, A., Singh, B., Gupta, R.S. & Finberg, R.W. A mycobacterial heat-shock protein-responsive gamma delta T cell clone also responds to the homologous human heat-shock protein: a possible link between infection and autoimmunity. J. Infect. Dis.163, 156–160 (1991). ArticleCAS Google Scholar
van Eden, W. et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature331, 171–173 (1988). ArticleCAS Google Scholar
Holoshitz, J., Koning, F., Coligan, J.E., De Bruyn, J. & Strober, S. Isolation of CD4- CD8- mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature339, 226–229 (1989). ArticleCAS Google Scholar
Holoshitz, J., Matitiau, A. & Cohen, I.R. Arthritis induced in rats by cloned T lymphocytes responsive to mycobacteria but not to collagen type II. J. Clin. Invest.73, 211–215 (1984). ArticleCAS Google Scholar
van Eden, W. et al. Heat-shock protein T-cell epitopes trigger a spreading regulatory control in a diversified arthritogenic T-cell response. Immunol. Rev.164, 169–174 (1998). ArticleCAS Google Scholar
Kol, A., Lichtman, A.H., Finberg, R.W., Libby, P. & Kurt-Jones, E.A. Cutting edge: Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol.164, 13–17 (2000). ArticleCAS Google Scholar
Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature395, 284–248 (1998). ArticleCAS Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCAS Google Scholar
Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice Are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene oroduct. J. Immunol.162, 3749–3752 (1999). CAS Google Scholar
Zhang, F.X. et al. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J. Biol. Chem.274, 7611–7614 (1999). ArticleCAS Google Scholar
Todryk, S. et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol.163, 1398–1408 (1999). CASPubMed Google Scholar
Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein- chaperoned peptides. Science269, 1585–1588 (1995). ArticleCAS Google Scholar
Srivastava, P.K., Udono, H., Blachere, N.E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics39, 93–98 (1994). ArticleCAS Google Scholar
Srivastava, P.K., Menoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8, 657–665 (1998). ArticleCAS Google Scholar
Srivastava, P.K. & Udono, H. Heat shock protein-peptide complexes in cancer immunotherapy. Curr. Opin. Immunol.6, 728–732 (1994). ArticleCAS Google Scholar
Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117–120 (1997). ArticleCAS Google Scholar
Soncin, F. & Calderwood, S.K. Reciprocal effects of pro-inflammatory stimuli and anti-inflammatory drugs on the activity of heat shock factor-1 in human monocytes. Biochem. Biophys. Res. Commun.229, 479–484 (1996). ArticleCAS Google Scholar
Sistonen, L., Sarge, K.D. & Morimoto, R.I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell Biol.14, 2087–2099 (1994). ArticleCAS Google Scholar
Baler, R., Zou, J. & Voellmy, R. Evidence for a role of Hsp70 in the regulation of the heat shock response in mammalian cells. Cell Stress Chaperones1, 33–39 (1996). ArticleCAS Google Scholar
Janeway, C.A. & Travers, P. Immunobiology: The Immune System in Health and Disease (eds. Janeway, C.A. & Travers, P.) (Garland Publishing, New York, 1997).
Asea, A. Role of Histamine in the Regulation of Natural Killer Cells. Doctoral dissertation, Univ. Göteborg (Göteborg, Sweden, 1995).
Asea, A. et al. Histaminergic regulation of interferon-gamma (IFN-gamma) production by human natural killer (NK) cells. Clin. Exp. Immunol.105, 376–382 (1996). ArticleCAS Google Scholar
Hansson, M., Asea, A., Ersson, U., Hermodsson, S. & Hellstrand, K. Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. J. Immunol.156, 42–47 (1996). CASPubMed Google Scholar
Koo, G.C. et al. Association of serine protease with the rise of intracellular calcium in cytotoxic T lymphocytes. Cell. Immunol.174, 107–115 (1996). ArticleCAS Google Scholar