Mice lacking the norepinephrine transporter are supersensitive to psychostimulants (original) (raw)
References
Feldman, R. S., Meyer, J. S. & Quenzer, L. F. Principles of Neuropsychopharmacology 324–344 (Sinauer, Sunderland, Massachusetts, 1992). Google Scholar
Axelrod, J. & Kopin, I. J. The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog. Brain Res.31, 21–32 (1969). ArticleCAS Google Scholar
Lindvall, O. & Bjorklund, A. in Chemical Neuroanatomy (ed. Emson, P. C.) 229–255 (Raven, New York, 1983). Google Scholar
Amara, S. G. & Kuhar, M. J. Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci.16, 73–93 (1993). ArticleCAS Google Scholar
Giros, B. & Caron, M. G. Molecular characterization of the dopamine transporter. Trends Pharmacol. Sci.14, 43–49 (1993). ArticleCAS Google Scholar
Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature350, 350–354 (1991). ArticleCAS Google Scholar
Fritz, J. D., Jayanthi, L. D., Thoreson, M. A. & Blakely, R. D. Cloning and chromosomal mapping of the murine norepinephrine transporter. J. Neurochem.70, 2241–2251 (1998). ArticleCAS Google Scholar
Markou, A., Kosten, T. R. & Koob, G. F. Neurobiological similarities in depression and drug dependence: a self- medication hypothesis. Neuropsychopharmacology18, 135–174 (1998). ArticleCAS Google Scholar
Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev.18, 247–291 (1993). ArticleCAS Google Scholar
Jones, S. R. et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc. Natl. Acad. Sci. USA95, 4029–4034 (1998). ArticleCAS Google Scholar
Gainetdinov, R. R., Jones, S. R., Fumagalli, F., Wightman, R. M. & Caron, M. G. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res. Rev.26, 148–153 (1998). ArticleCAS Google Scholar
Jones, S. R. et al. Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat. Neurosci.2, 649–655 (1999). ArticleCAS Google Scholar
Bengel, D. et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (‘Ecstasy’) in serotonin transporter- deficient mice. Mol. Pharmacol.53, 649–655 (1998). ArticleCAS Google Scholar
Wang, Y. M. et al. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron19, 1285–1296 (1997). ArticleCAS Google Scholar
Palij P. & Stamford, J. A. Real-time monitoring of endogenous noradrenaline release in rat brain slices using fast cyclic voltammetry: 1. Characterization of evoked noradrenaline efflux and uptake from nerve terminals in the bed nucleus of stria terminalis, pars ventralis. Brain Res.587, 137–146 (1992). ArticleCAS Google Scholar
Leonard, B. E. The role of noradrenaline in depression: a review. J. Psychopharmacol.11, S39–S47 (1997). CAS Google Scholar
Hornig, A. & Van Praag, H. M. Depression: Neurobiological, Psychopathological and Therapeutic Advances (Wiley, New York, 1997). Google Scholar
Porsolt, R. D., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther.229, 327–336 (1977). CAS Google Scholar
Steru, L. et al. The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry11, 659–671 (1987). ArticleCAS Google Scholar
Richelson, E. Synaptic effects of antidepressants. J. Clin. Psychopharmacol.16, 1S–7S (1996). ArticleCAS Google Scholar
Giros, B. et al. Delineation of discrete domains for substrate, cocaine and tricyclic antidepressant interactions using chimeric dopamine-norepinephrine transporters. J. Biol. Chem.269, 15985–15988 (1994). CAS Google Scholar
Rossetti, Z. L., D'Aquila, P. S., Hmaidan, Y., Gessa, G. L. & Serra, G. Repeated treatment with imipramine potentiates cocaine-induced dopamine release and motor stimulation. Eur. J. Pharmacol.201, 243–245 (1991). ArticleCAS Google Scholar
Willner, P. The mesolimbic dopamine system as a target for rapid antidepressant action. Int. Clin. Psychopharmacol.12 (Suppl. 3), S7–S14 (1997). Article Google Scholar
Spyraki, C. & Fibiger, H. C. Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. Eur. J. Pharmacol.74, 195–206 (1981). ArticleCAS Google Scholar
Nestler, E. J. & Aghajanian, G. K. Molecular and cellular basis of addiction. Science278, 58–63 (1997). ArticleCAS Google Scholar
Carr, G. D., Fibiger, H. C. & Phillips, A. G. in The Neuropharmacological Basis of Reward (eds. Liebman, J. M. & Cooper, S. J.) 265–319 (Clarendon, Oxford, 1989). Google Scholar
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature379, 606–612 (1996). ArticleCAS Google Scholar
Rocha, B. A. et al. Cocaine self-administration in dopamine-transporter knockout mice. Nat. Neurosci.1, 132–137 (1998). ArticleCAS Google Scholar
Sora, I. et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc. Natl. Acad. Sci. USA95, 7699–7704 (1998). ArticleCAS Google Scholar
Reith, M. E. A. & Chen, N. in Neurotransmitter Transporters: Structure, Function and Regulation (ed. Reith, M. E. A.) 345–391 (Humana Press, Totowa, New Jersey, 1997). Book Google Scholar
Yavich, L., Lappalainen, R., Sirvio, J., Haapalinna, A. & MacDonald, E. Alpha2-adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur. J. Pharmacol.339, 113–119 (1997). ArticleCAS Google Scholar
Grenhoff, J. & Svensson, T. H. Clonidine modulates dopamine firing in rat ventral tegmental area. Eur. J. Pharmacol.165, 11–18 (1989). ArticleCAS Google Scholar
Cragg, S. J., Rice, M. E. & Greenfield, S. A. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area and striatum. J. Neurophysiol.77, 863–873 (1997). ArticleCAS Google Scholar
Willner P. Sensitization of dopamine D2- or D3-type receptors as a final common pathway in antidepressant drug action. Clin. Neuropharmacol.18 (Suppl. 1), S49–S56 (1995). Article Google Scholar
Mann, J. J. & Kapur, S. A dopaminergic hypothesis of major depression. Clin. Neuropharm.18, S57–S65 (1995). Article Google Scholar
Backstrom, I. T., Ross, S. B. & Marcusson, J. O. [3H]desipramine binding to rat brain tissue: binding to both noradrenaline uptake sites and sites not related to noradrenaline neurons. J. Neurochem.52, 1099–1106 (1989). ArticleCAS Google Scholar
Krobert, K. A., Sutton, R. L. & Feeney, D. M. Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensimotor cortex contusion: an in vivo microdialysis study in the awake rat. J. Neurochem.62, 2233–2240 (1994). ArticleCAS Google Scholar
Gainetdinov, R. R. et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science283, 397–401 (1999). ArticleCAS Google Scholar
Gong, W., Neill, D. & Justice, J. B. Jr. Conditioned place preference and locomotor activation produced by injection of psychostimulants into ventral pallidum. Brain Res.707, 64–74 (1996). ArticleCAS Google Scholar
Rinken, A., Finnman, U. B. & Fuxe, K. Pharmacological characterization of dopamine-stimulated [35S]-guanosine 5′-(λ-thiotriphosphate) ([35S]GTPλS) binding in rat striatal membranes. Biochem. Pharmacol.57, 155–162 (1999). ArticleCAS Google Scholar