The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? (original) (raw)

References

  1. Stebbins-Boaz, B. & Richter, J.D. Translational control during early development. Crit. Rev. Eukaryot. Gene Expr. 7, 73–94 (1997).
    Article CAS Google Scholar
  2. Gao, F.B. Messenger RNAs in dendrites: localization, stability, and implications for neuronal function. Bioessays 20, 70–8 (1998).
    Article CAS Google Scholar
  3. Richter, J.D. Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev. 63, 446–56 (1999).
    CAS PubMed PubMed Central Google Scholar
  4. Stutz, A. et al. In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol. Cell. Biol. 17, 1759–1767 (1997).
    Article CAS Google Scholar
  5. Stutz, A. et al. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 12, 2535–2548 (1998).
    Article CAS Google Scholar
  6. Korade-Mirnics, Z., Babitzke, P. & Hoffman, E. Myotonic dystrophy: molecular windows on a complex etiology. Nucleic Acids Res. 26, 1363–1368 (1998).
    Article CAS Google Scholar
  7. Timchenko, L.T. Myotonic dystrophy: the role of RNA CUG triplet repeats. Am. J. Hum. Genet. 64, 360–364 (1999).
    Article CAS Google Scholar
  8. Groenen, P.J. et al. Constitutive and regulated modes of splicing produce six major myotonic dystrophy protein kinase (DMPK) isoforms with distinct properties. Hum. Mol. Genet. 9, 605–616 (2000).
    Article CAS Google Scholar
  9. Storbeck, C.J., Sabourin, L.A., Waring, J.D. & Korneluk, R.G. Definition of regulatory sequence elements in the promoter region and the first intron of the myotonic dystrophy protein kinase gene. J. Biol. Chem. 273, 9139–9147 (1998).
    Article CAS Google Scholar
  10. Strong, P.N. & Brewster, B.S. Myotonic dystrophy: molecular and cellular consequences of expanded DNA repeats are elusive. J. Inherit. Metab. Dis. 20, 159–170 (1997).
    Article CAS Google Scholar
  11. Reddy, S. et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nature Genet. 13, 325–335 (1996).
    Article CAS Google Scholar
  12. Davis, B.M., McCurrach, M.E., Taneja, K.L., Singer, R.H. & Housman, D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA 94, 7388–7393 (1997).
    Article CAS Google Scholar
  13. Lu, X., Timchenko, N.A. & Timchenko, L.T. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 8, 53–60 (1999).
    Article CAS Google Scholar
  14. Roberts, R. et al. Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proc. Natl. Acad. Sci. USA 94, 13221–13226 (1997).
    Article CAS Google Scholar
  15. Taneja, K.L., McCurrach, M., Schalling, M., Housman, D. & Singer, R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell Biol. 128, 995–1002 (1995).
    Article CAS Google Scholar
  16. Philips, A.V., Timchenko, L.T. & Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).
    Article CAS Google Scholar
  17. Timchenko, N.A., Welm, A.L., Lu, X. & Timchenko, L.T. CUG repeat binding protein (CUGBP1) interacts with the 5′ region of C/EBPβ mRNA and regulates translation of C/EBPβ isoforms. Nucleic Acids Res. 27, 4517–4525 (1999).
    Article CAS Google Scholar
  18. Sasagawa, N., Takahashi, N., Suzuki, K. & Ishiura, S. An expanded CTG trinucleotide repeat causes trans RNA interference: a new hypothesis for the pathogenesis of myotonic dystrophy. Biochem. Biophys. Res. Commun. 264, 76–80 (1999).
    Article CAS Google Scholar
  19. Boucher, C.A. et al. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 4, 1919–1925 (1995).
    Article CAS Google Scholar
  20. Thornton, C.A., Wymer, J.P., Simmons, Z., McClain, C. & Moxley, R.T. 3rd. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nature Genet. 16, 407–409 (1997).
    Article CAS Google Scholar
  21. Klesert, T.R., Otten, A.D., Bird, T.D. & Tapscott, S.J. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nature Genet. 16, 402–406 (1997).
    Article CAS Google Scholar
  22. Eriksson, M., Ansved, T., Edstrom, L., Anvret, M. & Carey, N. Simultaneous analysis of expression of the three myotonic dystrophy locus genes in adult skeletal muscle samples: the CTG expansion correlates inversely with DMPK and 59 expression levels, but notDMAHP levels. Hum. Mol. Genet. 8, 1053–1060 (1999).
    Article CAS Google Scholar
  23. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).
    Article CAS Google Scholar
  24. Peng, S.S., Chen, C.Y., Xu, N. & Shyu, A.B. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17, 3461–3470 (1998).
    Article CAS Google Scholar
  25. Rimokh, R. et al. Rearrangement of CCND1 (BCL1/PRAD1) 3′ untranslated region in mantle- cell lymphomas and t(11q13)-associated leukemias. Blood 83, 3689–3696 (1994).
    CAS PubMed Google Scholar
  26. Chagnovich, D., Fayos, B.E. & Cohn, S.L. Differential activity of ELAV-like RNA-binding proteins in human neuroblastoma. J. Biol. Chem. 271, 33587–33591 (1996).
    Article CAS Google Scholar
  27. Chagnovich, D. & Cohn, S.L. Binding of a 40-kDa protein to the N-myc 3′-untranslated region correlates with enhanced N-myc expression in human neuroblastoma. J. Biol. Chem. 271, 33580–33586 (1996).
    Article CAS Google Scholar
  28. Chagnovich, D. & Cohn, S.L. Activity of a 40 kDa RNA-binding protein correlates with MYCN and c-fos mRNA stability in human neuroblastoma. Eur. J. Cancer 33, 2064–2067 (1997).
    Article CAS Google Scholar
  29. Lai, W.S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol. Cell. Biol. 19, 4311–4323 (1999).
    Article CAS Google Scholar
  30. Carballo, E., Lai, W.S. & Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).
    Article CAS Google Scholar
  31. Carballo, E., Lai, W.S. & Blackshear, P.J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).
    CAS Google Scholar
  32. Kontoyiannis, D., Pasparakis, M., Pizarro, T.T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).
    Article CAS Google Scholar
  33. Weiss, I.M. & Liebhaber, S.A. Erythroid cell-specific mRNA stability elements in the α2-globin 3′ nontranslated region. Mol. Cell. Biol. 15, 2457–2465 (1995).
    Article CAS Google Scholar
  34. Wang, X., Kiledjian, M., Weiss, I.M. & Liebhaber, S.A. Detection and characterization of a 3′ untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability. Mol Cell Biol 15, 1769–1777 (1995); erratum: 15, 2331 (1995).
    Article CAS Google Scholar
  35. Morales, J., Russell, J.E. & Liebhaber, S.A. Destabilization of human alpha-globin mRNA by translation anti- termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. J. Biol. Chem. 272, 6607–6613 (1997).
    Article CAS Google Scholar
  36. Russell, J.E. & Liebhaber, S.A. The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3′ untranslated region. Blood 87, 5314–5323 (1996).
    CAS PubMed Google Scholar
  37. Kobayashi, K. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392 (1998).
    Article CAS Google Scholar
  38. Fu, L., Minden, M.D. & Benchimol, S. Translational regulation of human p53 gene expression. EMBO J. 15, 4392–4401 (1996).
    Article CAS Google Scholar

Download references