Isomerization of a binary sigma–promoter DNA complex by transcription activators (original) (raw)
References
Gross, C.A. et al. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb. Symp. Quant. Biol.63, 141– 155 (1998). ArticleCASPubMed Google Scholar
Sasse-Dwight, S. & Gralla, J.D. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ54. Cell62, 945– 954 (1990). ArticleCASPubMed Google Scholar
Reitzer, L.J. & Magasanik, B. Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter . Cell45, 785–792 (1986). ArticleCASPubMed Google Scholar
Popham, D.L., Szeto, D., Keener, J. & Kustu, S. Function of a bacterial activator protein that binds to transcriptional enhancers. Science243, 629–635 ( 1989). ArticleCASPubMed Google Scholar
Wedel, A. & Kustu, S. The bacterial enhancer-binding protein NtrC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev.9, 2042– 2052 (1995). ArticleCASPubMed Google Scholar
Cannon, W., Gallegos, M.T., Casaz, P. & Buck, M. Amino terminal sequences of σN (σ54) inhibit RNA polymerase isomerisation. Genes Dev.13, 357– 370 (1999). ArticleCASPubMedPubMed Central Google Scholar
Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res.9, 27– 43 (1999). CASPubMed Google Scholar
Wang, J.T., Syed, A. & Gralla, J.D. Multiple pathways to bypass the enhancer requirement of sigma 54 RNA polymerase: roles for DNA and protein determinants. Proc. Natl. Acad. Sci. USA94, 9538–9543 ( 1997). ArticleCASPubMedPubMed Central Google Scholar
Gallegos, M.T. & Buck, M. Sequences in region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation . J. Mol. Biol.297, 849– 859 (2000). ArticleCASPubMed Google Scholar
Hsieh, M. & Gralla, J.D. Analysis of the N-terminal leucine heptad and hexad repeats of sigma 54. J. Mol. Biol.239, 15–24 (1994). ArticleCASPubMed Google Scholar
Hsieh, M., Tintut, Y. & Gralla, J.D. Functional roles for the glutamines within the glutamine-rich region of the transcription factor sigma 54. J. Biol. Chem.269, 373–378 (1994). CASPubMed Google Scholar
Syed, A. & Gralla, J.D. Identification of an N-terminal region of sigma 54 required for enhancer responsiveness. J. Bacteriol.180, 5619–5625 ( 1998). CASPubMedPubMed Central Google Scholar
Merrick, M.J. In a class of its own-the RNA polymerase sigma factor sigma 54 (sigma N). Mol. Microbiol.10, 903–909 (1993). ArticleCASPubMed Google Scholar
Morris, L., Cannon, W., Claverie-Martin, F., Austin, S. & Buck, M. DNA distortion and nucleation of local DNA unwinding within sigma-54 (σN) holoenzyme closed promoter complexes. J. Biol. Chem.269, 11563–11571 (1994). CASPubMed Google Scholar
Wang, J.T., Syed, A., Hsieh, M. & Gralla, J.D. Converting Escherichia coli RNA polymerase into an enhancer-responsive enzyme: role of an NH2-terminal leucine patch in sigma 54. Science270, 992–994 ( 1995). ArticleCASPubMed Google Scholar
Wang, J.T. & Gralla, J.D. The transcription initiation pathway of sigma 54 mutants that bypass the enhancer protein requirement. Implications for the mechanism of activation. J. Biol. Chem.271 , 32707–32713 (1996). ArticleCASPubMed Google Scholar
Gallegos, M.T. & Buck, M. Sequences in σN determining holoenzyme formation and properties. J. Mol. Biol.288, 539–553 ( 1999). ArticleCASPubMed Google Scholar
Casaz, P. & Buck, M. Probing the assembly of transcription initiation complexes through changes in σN protease sensitivity . Proc. Natl. Acad. Sci. USA94, 12145– 12150 (1997). ArticleCASPubMedPubMed Central Google Scholar
Casaz, P. & Buck, M. Region I modifies DNA binding domain conformation of sigma 54 holoenzyme. J. Mol. Biol.285, 507–514 (1999). ArticleCASPubMed Google Scholar
Chaney, M. & Buck, M. The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness. Mol. Microbiol.33, 1200–1209 (1999). ArticleCASPubMed Google Scholar
Guo, Y., Wang, L. & Gralla, J.D. A fork junction DNA-protein switch that controls promoter melting by the bacterial enhancer-dependent sigma factor. EMBO J.18, 3736–3745 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. & Gralla, J.D. Multiple in vivo roles for the −12-region elements of sigma 54 promoters. J. Bacteriol.180, 5626–5631 (1998). CASPubMedPubMed Central Google Scholar
Buck, M. & Cannon, W. Specific binding of the transcription factor sigma-54 to promoter DNA. Nature358, 422 –424 (1992). ArticleCASPubMed Google Scholar
Weiss, D.S., Batut, J., Klose, K.E., Keener, J. & Kustu, S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription . Cell67, 155–167 (1991). ArticleCASPubMed Google Scholar
González, V., Olvera, L., Soberón, X. & Morett, E. In vivo studies on the positive control function of NifA: a conserved hydrophobic amino acid patch at the central domain involved in transcriptional activation. Mol. Microbiol.28, 55– 67 (1998). ArticlePubMed Google Scholar
Wang, Y.K. & Hoover, T.R. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation. J. Bacteriol.179, 5812– 5819 (1997). ArticleCASPubMedPubMed Central Google Scholar
Oguiza, J.A., Gallegos, M.T., Chaney, M.K., Cannon, W.V. & Buck, M. Involvement of the σN DNA-binding domain in open complex formation. Mol. Microbiol.33 , 873–885 (1999). ArticleCASPubMed Google Scholar
Jovanovic, G., Rakonjac, J. & Model, P. In vivo and in vitro activities of the Escherichia coli σ54 transcription activator, PspF, and its DNA-binding mutant, PspFΔHTH . J. Mol. Biol.285, 469– 483 (1999). ArticleCASPubMed Google Scholar
Austin, S., Buck, M., Cannon, W., Eydmann, T. & Dixon, R. Purification and in vitro activities of the native nitrogen fixation control proteins NifA and NifL. J. Bacteriol.176, 3460–3465 ( 1994). ArticleCASPubMedPubMed Central Google Scholar
Hunt, T.P. & Magasanik, B. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc. Natl. Acad. Sci. USA82, 8453–8457 ( 1985). ArticleCASPubMedPubMed Central Google Scholar
Klose, K.E., North, A.K., Stedman, K.M. & Kustu, S. The major dimerization determinants of the nitrogen regulatory protein NtrC from enteric bacteria lie in its carboxy-terminal domain. J. Mol. Biol.241 , 233–245 (1994). ArticleCASPubMed Google Scholar
Rombel, I., North, A., Hwang, I., Wyman, C. & Kustu, S. The bacterial enhancer-binding protein NtrC as a molecular machine. Cold Spring Harb. Symp. Quant. Biol.63, 157–166 (1998). ArticleCASPubMed Google Scholar
Lee, J.H. & Hoover, T.R. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA92, 9702–9706 ( 1995). ArticleCASPubMedPubMed Central Google Scholar
Gallegos, M.T., Cannon, W. & Buck, M. Functions of the σ54 region I in trans and implications for transcription activation. J. Biol. Chem. 274, 25285–25290 (1999). ArticleCASPubMed Google Scholar
Buckle, M., Pemberton, I.K., Jacquet, M.A. & Buc, H. The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. J. Mol. Biol.285, 955–964 (1999). ArticleCASPubMed Google Scholar
Reinberg et al. The RNA polymerase II general transcription factors: past, present and future. Cold Spring Harb. Symp. Quant. Biol.63, 83– 103 (1998). ArticleCASPubMed Google Scholar
Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell98, 811– 824 (1999). ArticleCASPubMed Google Scholar
Tinker-Kulberg, R.L., Fu, T.J., Geiduschek, E.P. & Kassavetis, G.A. A direct interaction between a DNA-tracking protein and a promoter recognition protein: implications for searching DNA sequence. EMBO J.15, 5032–5039 (1996). ArticleCASPubMedPubMed Central Google Scholar
Cannon, W. et al. Core RNA polymerase and promoter DNA interactions of purified domains of sigma N: bipartite functions. J. Mol. Biol.248, 781–803 (1995). ArticleCASPubMed Google Scholar