Role of Drosophila IKKγ in a Toll-independent antibacterial immune response (original) (raw)
References
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science284, 1313–1318 (1999). ArticleCASPubMed Google Scholar
Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol.23, 329–344 (1999). ArticleCASPubMed Google Scholar
Ekengren, S. & Hultmark, D. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol.29, 965 –972 (1999). ArticleCASPubMed Google Scholar
Levashina, E. A. et al. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem.233, 694–700 (1995). ArticleCASPubMed Google Scholar
Lowenberger, C. et al. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem.274, 20092 –20097 (1999). ArticleCASPubMed Google Scholar
Engström, Y. et al. KappaB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol.232, 327–333 (1993). ArticlePubMed Google Scholar
Kappler, C. et al. Insect immunity. Two 17-bp repeats nesting a kappaB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J.12 , 1561–1568 (1993). ArticleCASPubMedPubMed Central Google Scholar
Meister, M., Braun, A., Kappler, C., Reichhart, J.-M. & Hoffmann, J. A. Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J.13, 5958–5966 (1994). ArticleCASPubMedPubMed Central Google Scholar
Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science238, 692– 694 (1987). ArticleCASPubMed Google Scholar
Ip, Y.T. et al. Dif, a dorsal-related gene that mediates an immune-response in Drosophila. Cell75, 753– 763 (1993). ArticleCASPubMed Google Scholar
Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA93, 10343–10347 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity12, 569–580 (2000). ArticleCASPubMed Google Scholar
Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF- kappaB factor. Genes Dev.13, 792–797 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell4, 1–20 (1999). Article Google Scholar
Govind, S. Control of development and immunity by Rel transcription factors in Drosophila. Oncogene18, 6875– 6887 (1999). ArticleCASPubMed Google Scholar
Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J.18, 3380– 3391 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86, 973–983 (1996). ArticleCASPubMed Google Scholar
Nicolas, E., Reichhart, J. M., Hoffmann, J. A. & Lemaitre, B. In vivo regulation of the I_k_B homologue cactus during the immune response of Drosophila. J. Biol. Chem.273, 10463–10469 (1998). ArticleCASPubMed Google Scholar
Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin- deficient Drosophila. Science285 , 1917–1919 (1999). ArticleCASPubMed Google Scholar
Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophilia NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO R. (in the press, 2000).
Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA92, 9465– 9469 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wu, L.P. & Anderson, K. V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature392, 93–97 (1998). ArticleCASPubMed Google Scholar
Corbo, J. C. & Levine, M. Characterization of an immunodeficiency mutant in Drosophila. Mech. Dev.55, 211 –220 (1996). ArticleCASPubMed Google Scholar
Levashina, E. A., Ohresser, S., Lemaitre, B. & Imler, J. L. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol.278 , 515–527 (1998). ArticleCASPubMed Google Scholar
Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms . Proc. Natl Acad. Sci. USA94, 14614– 14619 (1997). ArticleCASPubMedPubMed Central Google Scholar
Flyg, C. & Boman, H. G. Drosophila genes cut and miniature are associated with the susceptibility to infection by Serratia marcessens. Genet. Res.52, 51–56 (1988). ArticleCAS Google Scholar
Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature338, 432–434 (1989). ArticleCASPubMed Google Scholar
Silverman, N. et al. A Drosophila I-B kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev., in press (2000).
Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell93, 1231–1240 (1998). ArticleCASPubMed Google Scholar
Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature395, 297–300 (1998). ArticleCASPubMed Google Scholar
Mercurio, F. et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol.19, 1526–1538 (1999). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. Identification of a cell protein (FIP-3) as a modulator of NF-kappaB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis. Proc. Natl Acad. Sci. USA96, 1042–1047 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity12, 301–311 (2000). ArticleCASPubMed Google Scholar
Israël, A. The IKK complex: an integrator of all signals that affect NF-kappaB. Trends Cell Biol.10, 129–133 (2000). ArticlePubMed Google Scholar
Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature405, 466– 472 (2000). ArticleCASPubMed Google Scholar
Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev.14, 854–862 (2000). CASPubMedPubMed Central Google Scholar
Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model Incontinentia Pigmenti . Mol. Cell5, 981–992 (2000). ArticleCASPubMed Google Scholar
Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder Incontinentia Pigmenti. Mol. Cell5, 969– 979 (2000). ArticleCASPubMed Google Scholar
Peters, R.T., Liao, S.-M. & Maniatis, T. IKK epsilon is part of a novel PMA-inducible I-kappaB kinase complex. Mol. Cell5, 513– 522 (2000). ArticleCASPubMed Google Scholar
Pomerantz, J. L. & Baltimore, D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J.18, 6694– 6704 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lu, Y., Wu, L. & Anderson, K. Molecular and genetic analysis of ird5 gene. 40th Annual Drosophila Research Conference 143 (Seattle, 1999). Google Scholar
Kim, Y. S. et al. Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J. Biol. Chem.275, 2071– 2079 (2000). ArticleCASPubMed Google Scholar
Williams, M., Rodriguez, A., Kimbrell, D. & Eldon, E. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J.15, 6120– 6130 (1997). Article Google Scholar
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO R. (in the press, 2000).
Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10781– 10784 (2000).
Lemaitre, B. et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J.14, 536–545 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science252, 1162–1164 (1991). ArticleCASPubMed Google Scholar