Role of Drosophila IKKγ in a Toll-independent antibacterial immune response (original) (raw)

References

  1. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).
    Article CAS PubMed Google Scholar
  2. Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999).
    Article CAS PubMed Google Scholar
  3. Ekengren, S. & Hultmark, D. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29, 965 –972 (1999).
    Article CAS PubMed Google Scholar
  4. Levashina, E. A. et al. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694–700 (1995).
    Article CAS PubMed Google Scholar
  5. Lowenberger, C. et al. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 274, 20092 –20097 (1999).
    Article CAS PubMed Google Scholar
  6. Engström, Y. et al. KappaB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327–333 (1993).
    Article PubMed Google Scholar
  7. Kappler, C. et al. Insect immunity. Two 17-bp repeats nesting a kappaB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12 , 1561–1568 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  8. Meister, M., Braun, A., Kappler, C., Reichhart, J.-M. & Hoffmann, J. A. Insect immunity. A transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J. 13, 5958–5966 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  9. Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692– 694 (1987).
    Article CAS PubMed Google Scholar
  10. Ip, Y.T. et al. Dif, a dorsal-related gene that mediates an immune-response in Drosophila. Cell 75, 753– 763 (1993).
    Article CAS PubMed Google Scholar
  11. Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343–10347 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  12. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal, but not the antibacterial, response in Drosophila. Immunity 12, 569–580 (2000).
    Article CAS PubMed Google Scholar
  13. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF- kappaB factor. Genes Dev. 13, 792–797 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 1–20 (1999).
    Article Google Scholar
  15. Govind, S. Control of development and immunity by Rel transcription factors in Drosophila. Oncogene 18, 6875– 6887 (1999).
    Article CAS PubMed Google Scholar
  16. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380– 3391 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  17. Tatei, K. & Levine, M. Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol. Cell. Biol. 15, 3627–3634 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  18. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).
    Article CAS PubMed Google Scholar
  19. Nicolas, E., Reichhart, J. M., Hoffmann, J. A. & Lemaitre, B. In vivo regulation of the I_k_B homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).
    Article CAS PubMed Google Scholar
  20. Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin- deficient Drosophila. Science 285 , 1917–1919 (1999).
    Article CAS PubMed Google Scholar
  21. Stöven, S., Ando, I., Kadalayil, L., Engström, Y. & Hultmark, D. Activation of the Drosophilia NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO R. (in the press, 2000).
  22. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465– 9469 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  23. Wu, L.P. & Anderson, K. V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93–97 (1998).
    Article CAS PubMed Google Scholar
  24. Corbo, J. C. & Levine, M. Characterization of an immunodeficiency mutant in Drosophila. Mech. Dev. 55, 211 –220 (1996).
    Article CAS PubMed Google Scholar
  25. Levashina, E. A., Ohresser, S., Lemaitre, B. & Imler, J. L. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol. 278 , 515–527 (1998).
    Article CAS PubMed Google Scholar
  26. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential display of antimicrobial peptide genes after infection by various classes of microorganisms . Proc. Natl Acad. Sci. USA 94, 14614– 14619 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  27. Flyg, C. & Boman, H. G. Drosophila genes cut and miniature are associated with the susceptibility to infection by Serratia marcessens. Genet. Res. 52, 51–56 (1988).
    Article CAS Google Scholar
  28. Cohen, S. M., Bronner, G., Kuttner, F., Jurgens, G. & Jackle, H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature 338, 432–434 (1989).
    Article CAS PubMed Google Scholar
  29. Silverman, N. et al. A Drosophila I-B kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev., in press (2000).
  30. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93, 1231–1240 (1998).
    Article CAS PubMed Google Scholar
  31. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297–300 (1998).
    Article CAS PubMed Google Scholar
  32. Mercurio, F. et al. IkappaB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. Cell. Biol. 19, 1526–1538 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  33. Li, Y. et al. Identification of a cell protein (FIP-3) as a modulator of NF-kappaB activity and as a target of an adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis. Proc. Natl Acad. Sci. USA 96, 1042–1047 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  34. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12, 301–311 (2000).
    Article CAS PubMed Google Scholar
  35. Israël, A. The IKK complex: an integrator of all signals that affect NF-kappaB. Trends Cell Biol. 10, 129–133 (2000).
    Article PubMed Google Scholar
  36. Smahi, A. et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405, 466– 472 (2000).
    Article CAS PubMed Google Scholar
  37. Rudolph, D. et al. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14, 854–862 (2000).
    CAS PubMed PubMed Central Google Scholar
  38. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model Incontinentia Pigmenti . Mol. Cell 5, 981–992 (2000).
    Article CAS PubMed Google Scholar
  39. Makris, C. et al. Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder Incontinentia Pigmenti. Mol. Cell 5, 969– 979 (2000).
    Article CAS PubMed Google Scholar
  40. Peters, R.T., Liao, S.-M. & Maniatis, T. IKK epsilon is part of a novel PMA-inducible I-kappaB kinase complex. Mol. Cell 5, 513– 522 (2000).
    Article CAS PubMed Google Scholar
  41. Pomerantz, J. L. & Baltimore, D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694– 6704 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  42. Tojima, Y. et al. NAK is an IkappaB kinase-activating kinase. Nature 404, 778–782 (2000).
    Article CAS PubMed Google Scholar
  43. Lu, Y., Wu, L. & Anderson, K. Molecular and genetic analysis of ird5 gene. 40th Annual Drosophila Research Conference 143 (Seattle, 1999).
    Google Scholar
  44. Kim, Y. S. et al. Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J. Biol. Chem. 275, 2071– 2079 (2000).
    Article CAS PubMed Google Scholar
  45. Williams, M., Rodriguez, A., Kimbrell, D. & Eldon, E. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 15, 6120– 6130 (1997).
    Article Google Scholar
  46. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infections. EMBO R. (in the press, 2000).
  47. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10781– 10784 (2000).
  48. Lemaitre, B. et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 14, 536–545 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  49. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
    Article CAS PubMed Google Scholar

Download references