Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85α (original) (raw)

References

  1. Vanhaesebroeck, B. & Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239–254 (2000).
    Article Google Scholar
  2. Fruman, D.A., Meyers, R.E. & Cantley, L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).
    Article CAS Google Scholar
  3. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 α subunit of phosphoinositide 3-kinase. Nature Genet. 21, 230–235 (1999).
    Article CAS Google Scholar
  4. Fruman, D.A., Cantley, L.C. & Carpenter, C.L. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85 α gene. Genomics 37, 113–121 (1996).
    Article CAS Google Scholar
  5. Antonetti, D.A., Algenstaedt, P. & Kahn, C.R. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol. Cell. Biol. 16, 2195–2203 (1996).
    Article CAS Google Scholar
  6. Inukai, K. et al. p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-kinase), p50α, p55α, and p85α, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem. 272, 7873–7882 (1997).
    Article CAS Google Scholar
  7. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).
    Article CAS Google Scholar
  8. Beg, A.A., Sha, W.C., Bronson, R.T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κ B. Nature 376, 167–170 (1995).
    Article CAS Google Scholar
  9. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.F. & Verma, I.M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).
    Article CAS Google Scholar
  10. Folli, F. et al. Regulation of endocytic-transcytotic pathways and bile secretion by phosphatidylinositol 3-kinase in rats. Gastroenterology 113, 954–965 (1997).
    Article CAS Google Scholar
  11. Misra, S., Ujhazy, P., Gatmaitan, Z., Varticovski, L. & Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem. 273, 26638–26644 (1998).
    Article CAS Google Scholar
  12. Misra, S., Ujhazy, P., Varticovski, L. & Arias, I.M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc. Natl Acad. Sci. USA 96, 5814–5819 (1999).
    Article CAS Google Scholar
  13. Press, O.W., Press, N.O. & Kaufman, S.D. Evaluation and management of chylous ascites. Ann. Intern. Med. 96, 358–364 (1982).
    Article CAS Google Scholar
  14. Jiang, B.H., Zheng, J.Z. & Vogt, P.K. An essential role of phosphatidylinositol 3-kinase in myogenic differentiation. Proc. Natl Acad. Sci. USA 95, 14179–14183 (1998).
    Article CAS Google Scholar
  15. Shioi, T. et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 19, 2537–2548 (2000).
    Article CAS Google Scholar
  16. Shepherd, P.R., Withers, D.J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998).
    Article CAS Google Scholar
  17. Backer, J.M. et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).
    Article CAS Google Scholar
  18. Shepherd, P.R. et al. Differential regulation of phosphoinositide 3-kinase adapter subunit variants by insulin in human skeletal muscle. J. Biol. Chem. 272, 19000–19007 (1997).
    Article CAS Google Scholar
  19. Kerouz, N.J., Horsch, D., Pons, S. & Kahn, C.R. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest. 100, 3164–3172 (1997).
    Article CAS Google Scholar
  20. Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18, 1379–1387 (1998).
    Article CAS Google Scholar
  21. Pons, S. et al. The structure and function of p55PIK reveal a new regulatory subunit for phosphatidylinositol 3-kinase. Mol. Cell. Biol. 15, 4453–4465 (1995).
    Article CAS Google Scholar
  22. Franke, T.F., Kaplan, D.R. & Cantley, L.C. PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437 (1997).
    Article CAS Google Scholar
  23. Sharma, P.M., Egawa, K., Gustafson, T.A., Martin, J.L. & Olefsky, J.M. Adenovirus-mediated overexpression of IRS-1 interacting domains abolishes insulin-stimulated mitogenesis without affecting glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 7386–7397 (1997).
    Article CAS Google Scholar
  24. Kim, Y.B. et al. Glucosamine infusion in rats rapidly impairs insulin stimulation of phosphoinositide 3-kinase but does not alter activation of Akt/protein kinase B in skeletal muscle. Diabetes 48, 310–320 (1999).
    Article CAS Google Scholar
  25. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).
    Article CAS Google Scholar
  26. Withers, D.J. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).
    Article CAS Google Scholar
  27. Egawa, K. et al. Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J. Biol. Chem. 274, 14306–14314 (1999).
    Article CAS Google Scholar
  28. Carpenter, C.L. et al. Purification and characterization of phosphoinositide 3-kinase from rat liver. J. Biol. Chem. 265, 19704–19711 (1990).
    CAS Google Scholar

Download references