Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D (original) (raw)

References

  1. MGD. Mouse Genome Informatics Project (The Jackson Laboratory, Bar Harbor, Maine, 2000).
  2. Chaib, H. et al. Mapping of DFNB12, a gene for a non-syndromal autosomal recessive deafness, to chromosome 10q21–22. Hum. Mol. Genet. 5, 1061–1064 (1996).
    Article CAS Google Scholar
  3. Wayne, S. et al. Localization of the Usher syndrome type ID gene (Ush1D) to chromosome 10. Hum. Mol. Genet. 5, 1689– 1692 (1996).
    Article CAS Google Scholar
  4. Deol, S.M. A gene for uncomplicated deafness in the mouse. J. Embryol. Exp. Morphol. 4, 190–195 ( 1956).
    Google Scholar
  5. Deol, M.S. The anatomy and development of the mutants pirouette, shaker-1 and waltzer in the mouse. Proc. Roy. Soc. 145, 206– 213 (1956).
    CAS Google Scholar
  6. Bryda, E.C., Ling, H. & Flaherty, L. A high-resolution genetic map around waltzer on mouse chromosome 10 and identification of a new allele of waltzer. Mamm. Genome 8, 1–4 ( 1997).
    Article CAS Google Scholar
  7. Yonezawa, S. et al. Chromosomal localization of a gene responsible for vestibulocochlear defects of BUS/Idr mice: identification as an allele of waltzer. Hear. Res. 134, 116–122 (1999).
    Article CAS Google Scholar
  8. Gumbiner, B.M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis . Cell 84, 345–357 (1996).
    Article CAS Google Scholar
  9. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 ( 1995).
    Article CAS Google Scholar
  10. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000).
    CAS PubMed Google Scholar
  11. Yap, A.S., Brieher, W.M. & Gumbiner, B.M. Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13, 119–146 (1997).
    Article CAS Google Scholar
  12. Suzuki, S.T. Protocadherins and diversity of the cadherin superfamily. J. Cell Sci. 109, 2609–2611 ( 1996).
    CAS PubMed Google Scholar
  13. Ozawa, M., Engel, J. & Kemler, R. Single amino acid substitutions in one Ca2+ binding site of uvomorulin abolish the adhesive function. Cell 63, 1033–1038 ( 1990).
    Article CAS Google Scholar
  14. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551–572 (2000).
    Article CAS Google Scholar
  15. Noben-Trauth, K., Zheng, Q.Y., Johnson, K.R. & Nishina, P.M. mdfw: a deafness susceptibility locus that interacts with deaf waddler (dfw). Genomics 44, 266– 272 (1997).
    Article CAS Google Scholar
  16. Street, V.A., McKee-Johnson, J.W., Fonseca, R.C., Tempel, B.L. & Noben-Trauth, K. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nature Genet. 19, 390–394 (1998).
    Article CAS Google Scholar
  17. Alagramam, K.N. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15 , a new protocadherin gene. Nature Genet. 27, 99–102 (2000).
    Article Google Scholar
  18. Yamoah, E.N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 18, 610–624 (1998).
    Article CAS Google Scholar
  19. Johnson, K.R., Erway, L.C., Cook, S.A., Willott, J.F. & Zheng, Q.Y. A major gene affecting age-related hearing loss in C57BL/6J mice. Hear. Res. 114, 83– 92 (1997).
    Article CAS Google Scholar
  20. Bolz, H. et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nature Genet. 27, 105–112 (2000).
    Google Scholar
  21. Liu, X., Udovichenko, I.P., Brown, S.D., Steel, K.P. & Williams, D.S. Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267–6274 (1999).
    Article CAS Google Scholar
  22. Schultz, J., Copley, R.R., Doerks, T., Ponting, C.P. & Bork, P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28, 231 –234 (2000).
    Article CAS Google Scholar
  23. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525– 539 (1996).
    Article CAS Google Scholar
  24. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).
    Article CAS Google Scholar
  25. Flaherty, L., Messer, A., Russell, L.B. & Rinchik, E.M. Chlorambucil-induced mutations in mice recovered in homozygotes. Proc. Natl. Acad. Sci. USA 89, 2859– 2863 (1992).
    Article CAS Google Scholar
  26. Noben-Trauth, K., Naggert, J.K., North, M.A. & Nishina, P.M. A candidate gene for the mouse mutation tubby. Nature 380, 534–538 (1996).
    Article CAS Google Scholar
  27. Lanford, P.J. et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nature Genet. 21, 289 –292 (1999).
    Article CAS Google Scholar
  28. Hunter-Duvar, I.M. A technique for preparation of cochlear specimens for assessment with the scanning electron microscope. Acta Otolaryngol. Suppl. 351, 3–23 (1978).
    Article CAS Google Scholar
  29. Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125 , 557–566 (1998).
    CAS PubMed Google Scholar

Download references