Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability (original) (raw)
Otis, T.S., De Koninck, Y. & Mody, I. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl. Acad. Sci. USA91, 7698–702 (1994). ArticleCAS Google Scholar
Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature395, 172–177 (1998). ArticleCAS Google Scholar
Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Rikhter, T.Y. & Coulter, D.A. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy. Nature Med.4, 1166–1172 (1998). ArticleCAS Google Scholar
Buhl, E.H., Otis, T.S. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science271, 369–373 (1996). ArticleCAS Google Scholar
Chen, K., Baram, T.Z. & Soltesz, I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature Med.5, 888–894 (1999). ArticleCAS Google Scholar
Walker, M.C. & Kullmann, D.M. Febrile convulsions: a 'benign' condition? Nature Med.5, 871–872 (1999). ArticleCAS Google Scholar
Shinnar, S. Prolonged febrile seizures and mesial temporal sclerosis. Ann. Neurol.43, 411–412 (1998). ArticleCAS Google Scholar
Cendes, F. et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology43, 1083–1087 (1993). ArticleCAS Google Scholar
Dube, C. et al. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol.47, 336–344 (2000). ArticleCAS Google Scholar
Baram, T.Z., Gerth, A. & Schultz, L. Febrile seizures: an appropriate-aged model suitable for long-term studies. Dev. Brain Res.98, 265–270 (1997). ArticleCAS Google Scholar
VanLandingham, K.E., Heinz, E.R., Cavazos, J.E. & Lewis, D.V. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann. Neurol.43, 413–426 (1998). ArticleCAS Google Scholar
Brown, H.F., DiFrancesco, D. & Noble, S.J. How does adrenaline accelerate the heart? Nature280, 235–236 (1979). ArticleCAS Google Scholar
Mayer, M.L. & Westbrook, G.L. A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. J. Physiol. (Lond.)340, 19–45 (1983). ArticleCAS Google Scholar
Pape, H.C. & McCormick, D.A. Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature340, 715–718 (1989). ArticleCAS Google Scholar
Soltesz, I. et al. Two inward currents and the transformation of low-frequency oscillations of thalamocortical cells. J. Physiol. (Lond.)441, 175–197 (1991). ArticleCAS Google Scholar
Maccaferri, G. & McBain, C.J. The hyperpolarization-activated current (_I_h) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J. Physiol. (Lond.)497, 119–130 (1996). ArticleCAS Google Scholar
Pape, H.C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Ann. Rev. Physiol.58, 299–327 (1996). ArticleCAS Google Scholar
Santoro, B. & Tibbs, G.R. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann. NY Acad. Sci.868, 741–764 (1999). ArticleCAS Google Scholar
Beaumont, V. & Zucker, R.S. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic _I_h channels. Nature Neurosci.3, 133–141 (2000). ArticleCAS Google Scholar
Siegelbaum, S.A. Presynaptic facilitation by hyperpolarization-activated pacemaker channels. Nature Neurosci.3, 101–102 (2000). ArticleCAS Google Scholar
BoSmith, R.E., Briggs, I. & Sturgess, N.C. Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (_I_f) in guinea-pig dissociated sinoatrial node cells. Brit. J. Pharm.110, 343–349 (1993). ArticleCAS Google Scholar
Soltesz, I. & Deschênes, M. Low- and high-frequency membrane-potential oscillations during theta activity in morphologically identified neurons of the rat hippocampus during ketamine-xylazine anesthesia. J. Neurophysiol.70, 97–116 (1993). ArticleCAS Google Scholar
Harris, N.C & Constanti, A. Mechanism of block by ZD-7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J. Neurophysiol.74, 2366–2378 (1995). ArticleCAS Google Scholar
Staley, K.J., Soldo, B.L. & Proctor, W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science269, 977–981 (1995). ArticleCAS Google Scholar
Storm, J.F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature336, 379–381 (1988). ArticleCAS Google Scholar
Krause, M. & Pedarzani, P. A protein phosphatase is involved in the cholinergic suppression of the Ca2+-activated K+ current sIAHP in hippocampal pyramidal neurons. Neuropharmacology39, 1274–1283 (2000). ArticleCAS Google Scholar
Hines, M.L. Computer modeling methods for neurons. in The Handbook of Brain Theory and Neural Networks. (ed. Arbib, M.A.) 226–230 (MIT Press, Cambridge, Massachusetts, 1995). Google Scholar
Aradi, I. & Holmes, W.R. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J. Comput. Neurosci.6, 215–235 (1999). ArticleCAS Google Scholar
Freund, T.F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus6, 347–470 (1996). ArticleCAS Google Scholar
Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci.18, 7613–7624 (1998). ArticleCAS Google Scholar
Holmes, G.L. & Ben-Ari, Y. Seizures in the developing brain: Perhaps not so benign after all. Neuron21, 1231–1234 (1998). ArticleCAS Google Scholar
Villeneuve, N., Ben-Ari, Y., Holmes, G.L. & Gaiarsa, J.-L. Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells. Ann. Neurol.47, 729–738 (2000). ArticleCAS Google Scholar
Santoro, B., Grant, S.G., Bartsch, D. & Kandel, E.R. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA94, 14815–14820 (1997). ArticleCAS Google Scholar
Santoro, B. et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell93, 717–729 (1998). ArticleCAS Google Scholar
Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature393, 587–591 (1998). ArticleCAS Google Scholar
Moosmang, S., Biel, M., Hofmann, F. & Ludwig, A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol. Chem . 380, 975–980 (1999). ArticleCAS Google Scholar
Maccaferri, G., Mangoni, M., Lazzari, A. & DiFrancesco, D. Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J. Neurophysiol.69, 2129–2136 (1993). ArticleCAS Google Scholar
Lüthi, A. & McCormick, D.A. Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production. Nature Neurosci.2, 634–41 (1999). Article Google Scholar
DiFrancesco, D. & Tortora, P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature351, 145–7 (1991). ArticleCAS Google Scholar
Baker, K., Warren, K.S. Yellen, G., & Fishman, M.C. Defective “pacemaker” current (_I_h) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. USA94, 4554–4559 (1997). ArticleCAS Google Scholar
Smith, R.L., Clayton, G.H., Wilcox, C.L., Escudero, K.W. & Staley, K.J. Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: A potential mechanism for cell-specific modulation of inhibition. J. Neurosci.15, 4057–4067 (1995). ArticleCAS Google Scholar
Hollrigel, G.H., Toth, K. & Soltesz, I. Neuroprotection by propofol in acute mechanical injury: Role of GABAergic inhibition. J. Neurophysiol.76, 2412–2422 (1996). ArticleCAS Google Scholar
Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol.67, 508–529 (1992). ArticleCAS Google Scholar
Numann, R.E., Wadman, W.J. & Wong, R.K. Outward currents of single hippocampal cells obtained from the adult guinea-pig. J. Physiol. (Lond.)393, 331–353 (1987). ArticleCAS Google Scholar
Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.)487, 67–90 (1995). ArticleCAS Google Scholar