The impact of 'bursting' thalamic impulses at a neocortical synapse (original) (raw)
References
Steriade, M. & Llinas, R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev.68, 649–742 (1988). ArticleCAS Google Scholar
McCormick, D. A. & Feeser, H. R. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience39, 103–113 (1990). ArticleCAS Google Scholar
Sherman, S. M. & Koch, C. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp. Brain Res.63, 1–20 (1986). ArticleCAS Google Scholar
Guido, W. & Weyand, T. Burst responses in thalamic relay cells of the awake behaving cat. J. Neurophysiol.74, 1782–1786 (1995). ArticleCAS Google Scholar
Ramcharan, E. J., Gnadt, J. W. & Sherman, S. M. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis. Neurosci.17, 55–62 (2000). ArticleCAS Google Scholar
Ramcharan, E. J., Cox, C. L., Zhan, X. J., Sherman, S. M. & Gnadt, J. W. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J. Neurophysiol . 84, 1982–1987 (2000) ArticleCAS Google Scholar
Weyand, T. G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. (in press).
Mukherjee, P. & Kaplan, E. Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. J. Neurophysiol.74, 1222–1243 (1995). ArticleCAS Google Scholar
Guido, W. & Sherman, S. M. Response latencies of cells in the cat's lateral geniculate nucleus are less variable during burst than tonic firing. Vis. Neurosci.15, 231–237 (1998). ArticleCAS Google Scholar
Reinagel, P., Godwin, D., Sherman, S. M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol.81, 2558–2569 (1999). ArticleCAS Google Scholar
Crick, F. Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. USA81, 4586–4590 (1984). ArticleCAS Google Scholar
Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol.76, 1367–1395 (1996). ArticleCAS Google Scholar
Steriade, M. & Buzsaki, G. in Brain Cholinergic Systems (eds. Steriade, M. & Buzsaki, G.) 3–62 (Oxford Univ. Press, 1990). Google Scholar
Sillito, A. M. & Kemp, J. A. Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res.289, 143–155 (1983). ArticleCAS Google Scholar
Metherate, R. & Ashe, J. H. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse14, 132–143 (1993). ArticleCAS Google Scholar
Coenen, A. M. L. & Vendrik, A. J. H. Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp. Brain. Res.14, 227–242 (1972). ArticleCAS Google Scholar
Gil, Z., Connors, B. W. & Amitai, Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron19, 679–686 (1997). ArticleCAS Google Scholar
Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature402, 75–79 (1999). ArticleCAS Google Scholar
Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci.20, 38–43 (1997). ArticleCAS Google Scholar
Usrey, W. M., Alonso, J.-M. & Reid, R. C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci . 20, 5461–5467 (2000). ArticleCAS Google Scholar
Agmon, A. & Connors, B. W. Correlations between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J. Neurosci.12, 319–329 (1992). ArticleCAS Google Scholar
Simons, D. J. & Carvell, G. E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol.61, 311–330 (1989). ArticleCAS Google Scholar
Swadlow, H. A. The influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. J. Neurophysiol.73, 1584–1599 (1995). ArticleCAS Google Scholar
Swadlow, H. A., Beloozerova, I. & Sirota, M. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J. Neurophysiol.79, 567–582 (1998). ArticleCAS Google Scholar
Levick, W. R., Cleland, G. G. & Dubin, M. W. Lateral geniculate neurons of cat: retinal inputs and physiology. Invest. Opththalmol.11, 302–311 (1972). CAS Google Scholar
Green, J. D. & Arduini, A. A. Hippocampal electrical activity and arousal. J. Neurophysiol . 57, 533–557 (1954). Article Google Scholar
Csicsvari, J., Hirase, H., Czurko, A. & Buzsaki, G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron21, 179–189 (1998). ArticleCAS Google Scholar
Kramis, R., Vanderwolf, C. H. & Bland, B. H. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol.49, 58–85 (1975). ArticleCAS Google Scholar
McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol.54, 782–806 (1985). ArticleCAS Google Scholar
Reid, R. C. & Alonso, J.-M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature378, 281–284 (1995). ArticleCAS Google Scholar
Swadlow, H. A. & Gusev, A. G. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. J. Neurophysiol.83, 2803–2813 (2000). Article Google Scholar
Reitboeck, H. J. Fiber microelectrodes for electrophysiological recordings. J. Neurosci. Methods8, 249–262 (1983). ArticleCAS Google Scholar
Eckhorn, R. & Thomas, U. A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. J. Neurosci. Methods49, 175–179 (1993). ArticleCAS Google Scholar
Lu, S.-M., Guido, W. & Sherman, S. M. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low threshold Ca2+ conductance. J. Neurophysiol.68, 2185–2198 (1992). ArticleCAS Google Scholar