Deregulated expression of c-Myc depletes epidermal stem cells (original) (raw)

References

  1. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).
    Article CAS Google Scholar
  2. He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B. & Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science. 281, 1509–1512 (1998).
    Article CAS Google Scholar
  3. Gandarillas, A. & Watt, F.M. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11, 2869–2882 (1997).
    Article CAS Google Scholar
  4. Jones, P.H. & Watt, F.M. Separation of human epidermal stem cells from transient amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713–724 (1993).
    Article CAS Google Scholar
  5. Amati, B. & Land, H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108 (1994).
    Article CAS Google Scholar
  6. Waikel, R.L., Wang, X.J. & Roop, D.R. Targeted expression of c-Myc in the epidermis alters normal proliferation, differentiation and UV-B induced apoptosis. Oncogene 18, 4870–4878 (1999).
    Article CAS Google Scholar
  7. Arin, M., Longley, M., Wang, X. & Roop, D.R. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J. Cell Biol. 152, 645–50 (2001).
    Article CAS Google Scholar
  8. Clark, R.A. et al. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound re-epithelialization. J. Invest. Dermatol. 79, 264–269 (1982).
    Article CAS Google Scholar
  9. Kim, J.P. et al. Mechanism of human keratinocyte migration on fibronectin: unique roles of RGD site and integrins. J. Cell. Physiol. 151, 443–450 (1992).
    Article CAS Google Scholar
  10. Georges-Labouesse E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet. 13, 370–373 (1996).
    Article CAS Google Scholar
  11. Guo, M., Toda, K. & Grinnell, F. Activation of human keratinocyte migration on type I collagen and fibronectin. J. Cell. Sci. 96, 197–205 (1990).
    CAS PubMed Google Scholar
  12. Tani, H., Morris, R.J. & Kaur, P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA 97, 10960–10965 (2000).
    Article CAS Google Scholar
  13. Barr, L.F., Campbell, S.E., Bochner, B.S. & Dang, C.V. Association of the decreased expression of α3β1 integrin with the altered cell: environmental interactions and enhanced soft agar cloning ability of c-Myc-overexpressing small cell lung cancer cells. Cancer Res. 58, 5537–5545 (1998).
    CAS PubMed Google Scholar
  14. Judware, R. & Culp, L.A. Concomitant down-regulation of expression of integrin subunits by N-Myc in human neuroblastoma cells: differential regulation of α2, α3 and β1. Oncogene. 14, 1341–1350 (1997).
    Article CAS Google Scholar
  15. Watt, F.M. & Hogan, B.L. Out of Eden: stem cells and their niches. Science. 287, 1427–1430 (2000).
    Article CAS Google Scholar
  16. Mackenzie, I.C. & Bickenbach, J.R. Label-retaining keratinocytes and Langerhans cells in mouse epithelia. Cell. Tissue. Res. 242, 551–556 (1985).
    Article CAS Google Scholar
  17. Potten, C.S., Wichmann, H.E., Loeffler, M., Dobek, K. & Major, D. Evidence for discrete cell kinetic subpopulations in mouse epidermis based on mathematical analysis. Cell. Tissue Kinet. 15, 305–329 (1982).
    CAS PubMed Google Scholar
  18. Bickenbach, J.R. & Chism, E. Selection and extended growth of murine epidermal stem cells in culture. Exp. Cell. Res. 244, 184–195 (1998).
    Article CAS Google Scholar
  19. Watt, F. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353, 831–837 (1998).
    Article CAS Google Scholar
  20. Biro, S., Fu, Y.M., Yu, Z.X. & Epstein, S.E. Inhibitory effects of antisense oligodeoxynucleotides targeting c-Myc mRNA on smooth muscle cell proliferation and migration. Proc. Natl. Acad. Sci. USA. 90, 654–658 (1993).
    Article CAS Google Scholar
  21. Arnold, I. & Watt, F.M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. (in press).
  22. Berton, T.R. et al. Characterization of an inducible, epidermal-specific knockout system: differential expression of lacZ in different Cre reporter mouse strains. Genesis 26, 160–161 (2000).
    Article CAS Google Scholar
  23. Wang, X.J., Greenhalgh, D.A., Lu, X.R., Bickenbach, J.R. & Roop, D.R. TGFα and v-fos cooperation in transgenic mouse epidermis induces aberrant keratinocyte differentiation and stable, autonomous papillomas. Oncogene. 10, 279–289 (1995).
    CAS PubMed Google Scholar
  24. Wang, N.D. et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science. 269, 1108–1112 (1995).
    Article CAS Google Scholar
  25. Stanley, J.R. & Yuspa, S.H. Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. J. Cell. Biol. 96, 1809–1814 (1983).
    Article CAS Google Scholar

Download references