Three decades of global methane sources and sinks (original) (raw)

References

  1. Etheridge, D. M., Pearman, G. I. & Fraser, P. J. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus 44B, 282–294 (1992).
    Article Google Scholar
  2. Blake, D. R. et al. Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys. Res. Lett. 9, 477–480 (1982).
    Article Google Scholar
  3. Cunnold, D. M. et al. In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. J. Geophys. Res.: Atmos. http://dx.doi.org/10.1029/2001jd001226 (2002).
  4. Dlugokencky, E. J. et al. Observational constraints on recent increases in the atmospheric CH burden. Geophys. Res. Lett., 36, L18803 (2009).
    Article Google Scholar
  5. Francey, R. J., Steele, L. P., Langenfelds, R. L. & Pak, B. C. High precision long-term monitoring of radiatively active and related trace gases at surface sites and from aircraft in the southern hemisphere atmosphere. J. Atmos. Sci. 56, 279–285 (1999).
    Article Google Scholar
  6. World Data Centre for Greenhouse Gases (WMO/WDCGG) (2012); http://ds.data.jma.go.jp/gmd/wdcgg/introduction.html.
  7. Brenninkmeijer, C. A. M. et al. Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system. Atmos. Chem. Phys. 7, 4953–4976 (2007).
    Article Google Scholar
  8. Wecht, K. J. et al. Validation of TES methane with HIPPO aircraft observations: implications for inverse modeling of methane sources. Atmos. Chem. Phys. 12, 1823–1832 (2012).
    Article Google Scholar
  9. Schuck, T. J. et al. Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. J. Geophys. Res.: Atmos. 117, D19304 (2012).
    Article Google Scholar
  10. Crevoisier, C. et al. Tropospheric methane in the tropics — first year from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 9, 6337–6350 (2009).
    Article Google Scholar
  11. Frankenberg, C. et al. Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. J. Geophys. Res.: Atmos. 116, D04302 (2011).
    Article Google Scholar
  12. Morino, I. et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos. Meas. Tech. 4, 1061–1076 (2011).
    Article Google Scholar
  13. Dlugokencky, E. J., Nisbet, E. G., Fisher, R. & Lowry, D. Global atmospheric methane: budget, changes and dangers. Phil. Trans. R. Soc. A 369, 2058–2072 (2011).
    Article Google Scholar
  14. Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805 (2008).
    Article Google Scholar
  15. Simpson, I. J. et al. Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature 488, 490–494 (2012).
    Article Google Scholar
  16. Denman, K. L. et al. in IPCC Climate Change 2007: Couplings Between Changes in the Climate System and Biogeochemistry (eds Solomon, S. et al.) (Cambridge Univ. Press; 2007).
    Google Scholar
  17. Cicerone, R. J. & Oremland, R. S. Biogeochemical aspects of atmospheric methane. Glob. Biogeochem. Cycles 2, 299–327 (1988).
    Article Google Scholar
  18. Ehhalt, D. H. The atmospheric cycle of methane. Tellus 26, 58–70 (1974).
    Article Google Scholar
  19. Fung, I. et al. Three-dimensional model synthesis of global methane cycle. J. Geophys. Res. 96, 13033–13065 (1991).
    Article Google Scholar
  20. Monteil, G. et al. Interpreting methane variations in the past two decades using measurements of CH4 mixing ratio and isotopic composition. Atmos. Chem. Phys. 11, 9141–9153 (2011).
    Article Google Scholar
  21. Bousquet, P. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443 (2006).
    Article Google Scholar
  22. Neef, L., van Weele, M. & van Velthoven, P. Optimal estimation of the present-day global methane budget. Glob. Biogeochem. Cycles 24, GB4024 (2010).
    Article Google Scholar
  23. Wahlen, M., Tanaka, N., Henry, R. & Yoshinari, T. 13C, D and 14C in methane. Eos 68 1220 (1987).
    Google Scholar
  24. Fisher, R. E. et al. Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophys. Res. Lett. 38, L21803 (2011).
    Article Google Scholar
  25. Keppler, F., Hamilton, J. T. G., Brass, M. & Rockmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).
    Article Google Scholar
  26. Nisbet, R. E. R. et al. Emission of methane from plants. Proc. R. Soc. B-Biol. Sci. 276, 1347–1354 (2009).
    Article Google Scholar
  27. Curry, C. L. Modeling the soil consumption of atmospheric methane at the global scale. Glob. Biogeochem. Cycles 21, GB4012 (2007).
    Article Google Scholar
  28. Zhuang, Q. et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Glob. Biogeochem. Cycles 18, GB3010 (2004).
    Article Google Scholar
  29. Allan, W., Struthers, H. & Lowe, D. C. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements. J. Geophys. Res.: Atmos. 112, D04306 (2007).
    Article Google Scholar
  30. Naik, V. et al. Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 5277–5298 (2013).
    Article Google Scholar
  31. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).
    Article Google Scholar
  32. Walter, K. M., Smith, L. C. & Stuart Chapin, F. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil. Trans. R. Soc. A 365, 1657–1676 (2007).
    Article Google Scholar
  33. Huang, J. & Prinn, R. G. Critical evaluation of emissions of potential new gases for OH estimation. J. Geophys. Res. 107, 4784 (2002).
    Article Google Scholar
  34. Montzka, S. A. et al. Small interannual variability of global atmospheric hydroxyl. Science 331, 67–69 (2011).
    Article Google Scholar
  35. Etiope, G., Lassey, K. R., Klusman, R. W. & Boschi, E. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35, L09307 (2008).
    Article Google Scholar
  36. Shakhova, N. et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327, 1246 (2010).
    Article Google Scholar
  37. Lassey, K. R., Lowe, D. C. & Smith, A. M. The atmospheric cycling of radiomethane and the “fossil fraction” of the methane source. Atmos. Chem. Phys. 7, 2141–2149 (2007).
    Article Google Scholar
  38. Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).
    Article Google Scholar
  39. Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).
    Article Google Scholar
  40. Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C. & Kaplan, J. O. The El Niño Southern Oscillation and wetland methane interannual variability. Geophys. Res. Lett. 38, L08810 (2011).
    Article Google Scholar
  41. Ringeval, B. et al. Climate-CH4 feedback from wetlands and its interaction with the climate-CO2 feedback. Biogeosciences 8, 2137–2157 (2011).
    Article Google Scholar
  42. Spahni, R. et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8, 1643–1665 (2011).
    Article Google Scholar
  43. Riley, W. J. et al. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8, 1925–1953 (2011).
    Article Google Scholar
  44. Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010); http://www.ipcc.ch.
  45. Ohara, T. et al. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020 Atmos Chem Phys 7, 4419–4444 (2007).
    Article Google Scholar
  46. Bergamaschi, P. et al. Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J. Geophys. Res. http://dx.doi.org/10.1029/2009JD012287 (2009).
  47. Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
    Article Google Scholar
  48. Sanderson, M. G. Biomass of termites and their emissions of methane and carbon dioxide: A global database. Glob. Biogeochem. Cycles 10, 543–557 (1996).
    Article Google Scholar
  49. Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C. & Ciais, P. Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform. Atmos. Chem. Phys. 5, 2635–2656 (2005).
    Article Google Scholar
  50. Simpson, I. J., Rowland, F. S., Meinardi, S. & Blake, D. R. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane. Geophys. Res. Lett. 33, L22808 (2006).
    Article Google Scholar
  51. Dlugokencky, E. J. et al. Changes in CH4 and CO growth rates after the eruption of Mt Pinatubo and their link with changes in tropical tropospheric UV flux. Geophys. Res. Lett. 23, 2761–2764 (1996).
    Article Google Scholar
  52. Langenfelds, R. L. et al. Interannual growth rate variations of atmospheric CO2 and its delta 13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Glob. Biogeochem. Cycles 16, 1048 (2002).
    Article Google Scholar
  53. Bousquet, P. et al. Source attribution of the changes in atmospheric methane for 2006–2008 Atmos. Chem. Phys. 11, 3689–3700 (2011).
    Article Google Scholar
  54. Dlugokencky, E. J., Masarie, K. A., Lang, P. M. & Tans, P. P. Continuing decline in the growth rate of the atmospheric methane burden. Nature 393, 447–450 (1998).
    Article Google Scholar
  55. Environmental Protection Agency. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030. (US Environmental Protection Agency, 2011).
  56. European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency. Emission Database for Global Atmospheric Research (EDGAR) (version 4.2) (2011); http://edgar.jrc.ec.europa.eu.
  57. Aydin, M. et al. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nature 476, 198–201 (2011).
    Article Google Scholar
  58. Kai, F. M., Tyler, S. C., Randerson, J. T. & Blake, D. R. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources. Nature 476, 194–197 (2011).
    Article Google Scholar
  59. Levin, I. et al. No inter-hemispheric δ13CH4 trend observed. Nature 486, E3–E4 (2012).
    Article Google Scholar
  60. Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. & Frankenberg, C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327, 322–325 (2010).
    Article Google Scholar
  61. Prigent, C., Papa, F., Aires, F., Rossow, W. B. & Matthews, E. Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res. 112, D12107 (2007).
    Article Google Scholar
  62. FLUXNET database; http://fluxnet.ornl.gov.
  63. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554–554 (2011).
    Article Google Scholar
  64. Houweling, S. et al. Iconic CO2 Time Series at Risk. Science 337, 1038–1040 (2012).
    Article Google Scholar
  65. Lamarque, J. F. et al. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geosci. Model Dev. 6, 179–206 (2013).
    Article Google Scholar
  66. Patra, P. K. et al. TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos. Chem. Phys. 11, 12813–12837 (2011).
    Article Google Scholar
  67. Kiemle, C. et al. Sensitivity studies for a space-based methane lidar mission. Atmos. Meas. Tech. 4, 2195–2211 (2011).
    Article Google Scholar
  68. Shindell, D. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183–189 (2012).
    Article Google Scholar
  69. Howarth, R., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change 106, 679–690 (2011).
    Article Google Scholar
  70. Cathles, L., Brown, L., Taam, M. & Hunter, A. A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R. W. Howarth, R. Santoro, and Anthony Ingraffea. Climatic Change 113, 525–535 (2012).
    Article Google Scholar
  71. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    Article Google Scholar
  72. Global Carbon Project (2013); http://www.globalcarbonproject.org/index.htm.
  73. Bruhwiler, L., Dlugokencky, E. J. & Masarie, K. AGU Fall Meeting abstr. B11G-01 (2011).
  74. Chen, Y. H. & Prinn, R. G. Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J. Geophys. Res. 111, D10307 (2006).
    Google Scholar
  75. Fraser, A. et al. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmos. Chem. Phys. 13, 5697–5713 (2013).
    Article Google Scholar
  76. Hein, R., Crutzen, P. J. & Heimann, M. An inverse modeling approach to investigate the global atmospheric methane cycle. Glob. Biogeochem. Cycles 11, 43–76 (1997).
    Article Google Scholar
  77. Pison, I., Bousquet, P., Chevallier, F., Szopa, S. & Hauglustaine, D. Multi-species inversion of CH4, CO and H-2 emissions from surface measurements. Atmos. Chem. Phys. 9, 5281–5297 (2009).
    Article Google Scholar
  78. Mieville, A. et al. Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction. Atmos. Environ. 44, 1469–1477 (2010).
    Article Google Scholar
  79. Van het Bolscher, M. et al. Emission data sets and methodologies for estimating emissions (eds Schultz, M. G. & Rast, S.) (2007).
  80. Wiedinmyer, C. et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).
    Article Google Scholar
  81. Dentener, F. et al. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030 Atmos. Chem. Phys. 5, 1731–1755 (2005).
    Article Google Scholar
  82. Environmental Protection Agency. Methane and Nitrous Oxide Emissions From Natural Sources. (US Environmental Protection Agency, 2010).
  83. Williams, J. E., Strunk, A., Huijnen, V. & van Weele, M. The application of the Modified Band Approach for the calculation of on-line photodissociation rate constants in TM5: implications for oxidative capacity. Geosci. Model Dev. 5, 15–35 (2012).
    Article Google Scholar
  84. Gurney, K. R. et al. Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Glob. Biogeochem. Cycles 18, GB2010 (2004).
    Article Google Scholar
  85. Prinn, R. G. et al. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292, 1882–1888 (2001).
    Article Google Scholar
  86. Beck, V. et al. Methane airborne measurements and comparison to global models during BARCA. Journal of Geophysical Research: Atmospheres 117, D15310 (2012).
    Article Google Scholar
  87. Dickens, G. R. Methane hydrates in quaternary climate change — The clathrate gun hypothesis. Science 299, 1017–1017 (2003).
    Article Google Scholar
  88. Hoelzemann, J. J., Schultz, M. G., Brasseur, G. P., Granier, C. & Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. J. Geophys. Res. 109, D14S04 (2004).
    Article Google Scholar
  89. Ito, A. & Penner, J. E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J. Geophys. Res. 109, D14S05 (2004).
    Google Scholar
  90. Rhee, T. S., Kettle, A. J. & Andreae, M. O. Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wise observations in the Atlantic. J. Geophys. Res. 114, D12304 (2009).
    Article Google Scholar
  91. Sugimoto, A., Inoue, T., Kirtibutr, N. & Abe, T. Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Glob. Biogeochem. Cycles 12, 595–605 (1998).
    Article Google Scholar
  92. Kasibhatla, K. et al. Inverse Methods in Global Biogeochemical Cycles, Volume 114 (AGU, 2000).
  93. Rodgers, C. D. Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
    Book Google Scholar
  94. Krol, M. & Lelieveld, J. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? J. Geophys. Res. 108, 4125 (2003).
    Article Google Scholar

Download references

Acknowledgements

This paper is the result of an international collaboration of scientists organized by the Global Carbon Project, a joint project of the Earth System Science Partnership. This work was supported by: the UK NERC National Centre for Earth Observation; the European Commission's 7th Framework Programme (FP7/2007-2013) projects MACC (grant agreement no. 218793) and GEOCARBON (grant agreement no. 283080); contract DE-AC52-07NA27344 with different parts supported by the US DOE IMPACTS and SciDAC Climate Consortium projects; computing resources of NERSC, which is supported by the US DOE under contract DE-AC02-05CH11231; NOAA flask data for CH3CCl3 (made available by S. Montzka); the Australian Climate Change Science Program, and ERC grant 247349. Simulations from LSCE were performed using HPC resources from DSM-CCRT and CCRT/CINES/IDRIS under the allocation 2012-t2012012201 made by GENCI (Grand Equipement National de Calcul Intensif). We thank the EDGAR group at JRC (Italy) and US-EPA for providing estimates of anthropogenic emissions.

Author information

Authors and Affiliations

  1. LSCE-CEA-UVSQ-CNRS, Orme des Merisiers, Gif-sur-Yvette, 91190, France
    Stefanie Kirschke, Philippe Bousquet, Philippe Ciais, Marielle Saunois, Frédéric Chevallier, Isabelle Pison, Benjamin Poulter, Martina Schmidt & Sophie Szopa
  2. Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601, Australia
    Josep G. Canadell
  3. NOAA ESRL, 325 Broadway, Boulder, 80305, Colorado, USA
    Edward J. Dlugokencky & Lori Bruhwiler
  4. Institute for Environment and Sustainability, Joint Research Centre, Ispra (Va), TP290, I-21027, Italy
    Peter Bergamaschi
  5. Lawrence Livermore National Laboratory, PO Box 808, Livermore, 94551-0808, California, USA
    Daniel Bergmann & Philip Cameron-Smith
  6. University of California Irvine, 570 Rowland Hall, Irvine, 92697, California, USA
    Donald R. Blake & Isobel J. Simpson
  7. Department of Environmental Sciences, Second University of Naples, via Vivaldi 43, Caserta, 81100, Italy
    Simona Castaldi
  8. Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, Lecce, 73100, Italy
    Simona Castaldi & Monia Santini
  9. School of Geosciences, University of Edinburgh, Crew Building, West Mains Road, Edinburgh, EH9 3JN, UK
    Liang Feng, Annemarie Fraser & Paul I. Palmer
  10. Max Planck Institute for Biogeochemistry, PF 100164, Jena, D-07701, Germany
    Martin Heimann
  11. Swiss Federal Research Institute WSL, Zuercherstrasse 111, Mensdorf, 8903, Switzerland
    Elke L. Hodson
  12. SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, CA Utrecht, 3584, The Netherlands
    Sander Houweling
  13. Institue for Marine and Atmospheric Research Utrecht, Sorbonnelaan 2, CA Utrecht, 3584, The Netherlands
    Sander Houweling & Bruno Ringeval
  14. Météo France, CNRM/GMGEC/CARMA, 42 av G. Coriolis, Toulouse, 31057, France
    Béatrice Josse
  15. Centre for Australian Weather and Climate Research/CSIRO Marine and Atmospheric Research, Aspendale, Victoria, 3195, Australia
    Paul J. Fraser, Paul B. Krummel, Ray L. Langenfelds & L. Paul Steele
  16. NCAR, PO Box 3000, Boulder, 80307-3000, Colorado, USA
    Jean-François Lamarque
  17. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
    Corinne Le Quéré
  18. UCAR/NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, 08540, New Jersey, USA
    Vaishali Naik
  19. University of Bristol, Office Old Park Hill, Cantock's Close, Clifton, BS8 1TS, Bristol, UK
    Simon O'Doherty
  20. Canadian Centre for Climate Modelling and Analysis, Environment Canada, 550 Sherbrooke Street West, West Tower, Montréal, H3A 1B9, Quebec, Canada
    David Plummer
  21. Massachusetts Institute of Technology, Building 54-1312, Cambridge, 02139-2307, Massachusetts, USA
    Ronald G. Prinn
  22. School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK
    Matt Rigby
  23. IMAU, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
    Bruno Ringeval
  24. Department of Systems Ecology, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
    Bruno Ringeval
  25. NASA Goddard Institute for Space Studies, 2880 Broadway, New York, 10025, New York, USA
    Drew T. Shindell & Apostolos Voulgarakis
  26. University of Bern, Physics Institute, Climate and Environmental Physics, Sidlerstrasse 5, Bern, CH-3012, Switzerland
    Renato Spahni
  27. NASA Goddard Space Flight Centre, Greenbelt, 20771, Maryland, USA
    Sarah A. Strode
  28. Universities Space Research Association, NASA Goddard Space Flight Centre, Greenbelt, 20771, Maryland, USA
    Sarah A. Strode
  29. Graduate School of Environmental Studies, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
    Kengo Sudo
  30. VU University, Faculty of Earth and Life Sciences, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
    Guido R. van der Werf
  31. Department of Physics, Imperial College London, London, SW7 2AZ, UK
    Apostolos Voulgarakis
  32. Royal Netherlands Meteorological Institute (KNMI), PO Box 201, De Bilt, 3730 AE, The Netherlands
    Michiel van Weele & Jason E. Williams
  33. Scripps Institution of Oceanography, UCSD, La Jolla, 92093-0244, California, USA
    Ray F. Weiss
  34. National Institute of Water and Atmospheric Research, Private Bag 50061, Omakau, 9352, Central Otago, New Zealand
    Guang Zeng

Authors

  1. Stefanie Kirschke
    You can also search for this author inPubMed Google Scholar
  2. Philippe Bousquet
    You can also search for this author inPubMed Google Scholar
  3. Philippe Ciais
    You can also search for this author inPubMed Google Scholar
  4. Marielle Saunois
    You can also search for this author inPubMed Google Scholar
  5. Josep G. Canadell
    You can also search for this author inPubMed Google Scholar
  6. Edward J. Dlugokencky
    You can also search for this author inPubMed Google Scholar
  7. Peter Bergamaschi
    You can also search for this author inPubMed Google Scholar
  8. Daniel Bergmann
    You can also search for this author inPubMed Google Scholar
  9. Donald R. Blake
    You can also search for this author inPubMed Google Scholar
  10. Lori Bruhwiler
    You can also search for this author inPubMed Google Scholar
  11. Philip Cameron-Smith
    You can also search for this author inPubMed Google Scholar
  12. Simona Castaldi
    You can also search for this author inPubMed Google Scholar
  13. Frédéric Chevallier
    You can also search for this author inPubMed Google Scholar
  14. Liang Feng
    You can also search for this author inPubMed Google Scholar
  15. Annemarie Fraser
    You can also search for this author inPubMed Google Scholar
  16. Martin Heimann
    You can also search for this author inPubMed Google Scholar
  17. Elke L. Hodson
    You can also search for this author inPubMed Google Scholar
  18. Sander Houweling
    You can also search for this author inPubMed Google Scholar
  19. Béatrice Josse
    You can also search for this author inPubMed Google Scholar
  20. Paul J. Fraser
    You can also search for this author inPubMed Google Scholar
  21. Paul B. Krummel
    You can also search for this author inPubMed Google Scholar
  22. Jean-François Lamarque
    You can also search for this author inPubMed Google Scholar
  23. Ray L. Langenfelds
    You can also search for this author inPubMed Google Scholar
  24. Corinne Le Quéré
    You can also search for this author inPubMed Google Scholar
  25. Vaishali Naik
    You can also search for this author inPubMed Google Scholar
  26. Simon O'Doherty
    You can also search for this author inPubMed Google Scholar
  27. Paul I. Palmer
    You can also search for this author inPubMed Google Scholar
  28. Isabelle Pison
    You can also search for this author inPubMed Google Scholar
  29. David Plummer
    You can also search for this author inPubMed Google Scholar
  30. Benjamin Poulter
    You can also search for this author inPubMed Google Scholar
  31. Ronald G. Prinn
    You can also search for this author inPubMed Google Scholar
  32. Matt Rigby
    You can also search for this author inPubMed Google Scholar
  33. Bruno Ringeval
    You can also search for this author inPubMed Google Scholar
  34. Monia Santini
    You can also search for this author inPubMed Google Scholar
  35. Martina Schmidt
    You can also search for this author inPubMed Google Scholar
  36. Drew T. Shindell
    You can also search for this author inPubMed Google Scholar
  37. Isobel J. Simpson
    You can also search for this author inPubMed Google Scholar
  38. Renato Spahni
    You can also search for this author inPubMed Google Scholar
  39. L. Paul Steele
    You can also search for this author inPubMed Google Scholar
  40. Sarah A. Strode
    You can also search for this author inPubMed Google Scholar
  41. Kengo Sudo
    You can also search for this author inPubMed Google Scholar
  42. Sophie Szopa
    You can also search for this author inPubMed Google Scholar
  43. Guido R. van der Werf
    You can also search for this author inPubMed Google Scholar
  44. Apostolos Voulgarakis
    You can also search for this author inPubMed Google Scholar
  45. Michiel van Weele
    You can also search for this author inPubMed Google Scholar
  46. Ray F. Weiss
    You can also search for this author inPubMed Google Scholar
  47. Jason E. Williams
    You can also search for this author inPubMed Google Scholar
  48. Guang Zeng
    You can also search for this author inPubMed Google Scholar

Contributions

S.K., P. Bousquet, P.C., J.G.C. and C.L.Q. designed the study and provided conceptual advice. S.K., P. Bousquet and M. Saunois processed data sets, developed figures and wrote the manuscript. E.J.D., M. Schmidt, P.J.F., P.B.K., L.P.S., R.L.L., R.G.P., M.R., R.F.W., D.R.B. and I.J.S. provided atmospheric in situ data. P.Bousquet, P.Bergamaschi, L.B., F.C., L.F., A.F., S.H., P.I.P. and I.P. provided top-down inversion results (all five emission categories). S.C., E.L.H., B.P., B.R., M.Santini, R.S. and G.R.v.d.W provided bottom-up modelling and inventory data sets for wetland, biomass burning and termite emissions. D.B., P.C.-S., B.J., J.-F.L., V.N., D.P., D.T.S., S.A.S., K.S., S.S., A.V., M.v.W., J.E.W. and G.Z. provided bottom-up estimates of CH4 loss due to OH. All authors contributed extensively to the work presented in this paper, and to revisions of the manuscript.

Corresponding author

Correspondence toPhilippe Bousquet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Kirschke, S., Bousquet, P., Ciais, P. et al. Three decades of global methane sources and sinks.Nature Geosci 6, 813–823 (2013). https://doi.org/10.1038/ngeo1955

Download citation