Structure and ligand recognition of class C GPCRs (original) (raw)
George SR, O'Dowd BF, Lee SP . G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002; 1: 808–20. CASPubMed Google Scholar
Lagerstrom MC, Schioth HB . Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7: 339–57. PubMed Google Scholar
Pin JP, Galvez T, Prezeau L . Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003; 98: 325–54. CASPubMed Google Scholar
Rondard P, Goudet C, Kniazeff J, Pin JP, Prezeau L . The complexity of their activation mechanism opens new possiblities for the modulation of mGlu and GABABclass C G protein-coupled receptors. Neuropharmacology 2011; 60: 82–92. CASPubMed Google Scholar
Urwyler S . Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol Rev 2011; 63: 59–126. CASPubMed Google Scholar
Kniazeff J, Prezeau L, Rondard P, Pin JP, Goudet C . Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacol Ther 2011; 130: 9–25. CASPubMed Google Scholar
Conn PJ, Christopoulos A, Lindsley CW . Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009; 8: 41–54. CASPubMedPubMed Central Google Scholar
Conn PJ . Pin J-P . Pharmacology and functions of metabotropic glutamate receptors. Annue Rev Pharmacol Toxicol 1997; 37: 205–37. CAS Google Scholar
Niswender CM, Conn PJ . Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annue Rev Pharmacol Toxicol 2010; 50: 295–322. CAS Google Scholar
Pin JP, Acher F . The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 2002; 1: 297–317. CASPubMed Google Scholar
Johnson KA, Conn PJ, Niswender CM . Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol Disord Drug Targets 2009; 8: 475–91. CASPubMedPubMed Central Google Scholar
Marino MJ . Williams DL Jr, O'Brien JA, Valenti O, McDonald TP, Clements MK, et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to parkinson's disease treatment. Proc Natl Acad Sci U S A 2003; 100: 13668–73.
Conn PJ, Lindsley CW, Jones CK . Activation of metabotropic gluatamate receptors as a novel approach for the treatment of schizophrenia. Trends Pharmacol Sci 2009; 30: 25–31. CASPubMed Google Scholar
Bettler B, Tiao JY . Molecular diversity, trafficking and subcellular localization of GABAB receptors. Pharmacol Ther 2006; 110: 533–43. CASPubMed Google Scholar
Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, et al. GABAB receptors function as heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 1998; 396: 674–79. CASPubMed Google Scholar
Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 1998; 396: 683–7. CASPubMed Google Scholar
Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a Venus flytrap mechanism for ligand binding. J Biol Chem 1999; 274: 13362–9. CASPubMed Google Scholar
Margeta-Mitrovic M, Jan YN, Jan LY . Function of GB1 and GB2 subunits in G protein coupling of GABAB receptors. Proc Natl Acad Sci U S A 2001; 98: 14649–54. CASPubMedPubMed Central Google Scholar
Kuramoto N, Wilkins ME, Fairfax BP, Revilla-Sanchez R, Terunuma M, Tamaki K, et al. Phospho-dependent functional modulation of GABAB receptors by the metabolic sensor AMP-dependent protein kinase. Neuron 2007; 53: 233–47. CASPubMedPubMed Central Google Scholar
Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I, et al. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/gamma-aminobutyric acid release and biosynthesis. J Neurosci Res 2005; 82: 665–73. CASPubMed Google Scholar
Tu H, Xu C, Zhang W, Liu Q, Rondard P, Pin JP, et al. GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J Neurosci 2010; 30: 749–59. CASPubMedPubMed Central Google Scholar
Goudet C, Magnaghi V, Landry M, Nagy F . Gereau RW 4th, Pin JP . Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 2009; 60: 43–56. CASPubMed Google Scholar
Cryan JF, Kaupmann K . Don't worry 'B' happy!: a role for GABAB receptors in anxiety and depression. Trends Pharmacol Sci 2005; 26: 36–43. CASPubMed Google Scholar
Bowery NG . GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 2006; 6: 37–43. CASPubMed Google Scholar
Brown EM . Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab 2007; 3: 122–33. CASPubMed Google Scholar
Deal C . Future therapeutic targets in osteoporosis. Curr Opin Rheumatol 2009; 21: 380–5. CASPubMed Google Scholar
Brown EM . Anti-parathyroid and anti-calcium sensing receptor antibodies in autoimmune hypoparathyroidism. Endocrinol Metab Clin North Am 2009; 38: 437–45. CASPubMedPubMed Central Google Scholar
Montmayeur JP, Liberles SD, Matsunami H, Buck LB . A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 2001; 4: 492–8. CASPubMed Google Scholar
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS . Mammalian sweet taste receptors. Cell 2001; 106: 381–90. CASPubMed Google Scholar
Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu H, et al. Molecular mechanism for the umami taste synergism. Proc Natl Acad Sci U S A 2008; 105: 20930–4. CASPubMedPubMed Central Google Scholar
Cao J, Huang S, Qian J, Huang J, Jin L, Su Z, et al. Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence. BMC Evol Biol 2009; 9: 67. PubMedPubMed Central Google Scholar
Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000; 407: 971–7. CASPubMed Google Scholar
Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K . Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci U S A 2002; 99: 2660–5. CASPubMedPubMed Central Google Scholar
Bessis AS, Rondard P, Gaven F, Brabet I, Triballeau N, Prezeau L, et al. Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proc Natl Acad Sci U S A 2002; 99: 11097–102. CASPubMedPubMed Central Google Scholar
Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, et al. Locking the dimeric GABAB G-protein-coupled receptor in its active state. J Neurosci 2004; 24: 370–7. CASPubMedPubMed Central Google Scholar
Tsuji Y, Shimada Y, Takeshita T, Kajimura N, Nomura S, Sekiyama N, et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J Biol Chem 2000; 275: 28144–51. CASPubMed Google Scholar
Romano C, Miller JK, Hyrc K, Dikranian S, Mennerick S, Takeuchi Y, et al. Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol Pharmacol 2001; 59: 46–53. CASPubMed Google Scholar
Ray K, Hauschild BC, Steinbach PJ, Goldsmith PK, Hauache O, Spiegel AM . Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization. Implications for function of monomeric Ca2+receptor. J Biol Chem 1999; 274: 27642–50. CAS Google Scholar
Ray K, Hauschild BC . Cys-140 is critical for metabotropic glutamate receptor-1 dimerization. J Biol Chem 2000; 275: 34245–51. CASPubMed Google Scholar
Liu J, Maurel D, Etzol S, Brabet I, Ansanay H, Pin JP, et al. Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J Biol Chem 2004; 279: 15824–30. CASPubMed Google Scholar
Rondard P, Huang S, Monnier C, Tu H, Blanchard B, Oueslati N, et al. Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning. EMBO J 2008; 27: 1321–32. CASPubMedPubMed Central Google Scholar
Muto T, Tsuchiya D, Morikawa K, Jingami H . Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2007; 104: 3759–64. CASPubMedPubMed Central Google Scholar
Hu J, Hauache O, Spiegel AM . Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J Biol Chem 2000; 275: 16382–9. CASPubMed Google Scholar
Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 2004; 279: 45068–75. CASPubMed Google Scholar
Rondard P, Liu J, Huang S, Malhaire F, Vol C, Pinault A, et al. Coupling of agonist binding to effector domain activation in metabotropic glutamate-like receptors. J Biol Chem 2006; 281: 24653–61. CASPubMed Google Scholar
Goudet C, Gaven F, Kniazeff J, Vol C, Liu J, Cohen-Gonsaud M, et al. Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc Natl Acad Sci U S A 2004; 101: 378–83. CASPubMed Google Scholar
Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prezeau L, Pin JP . Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 2004; 11: 706–13. CASPubMed Google Scholar
Huang S, Cao J, Jiang M, Labesse G, Liu J, Pin JP, et al. Interdomain movements in metabotropic glutamate receptor activation. Proc Natl Acad Sci U S A 2011; 108: 15480–5. CASPubMedPubMed Central Google Scholar
Monnier C, Tu H, Bourrier E, Vol C, Lamarque L, Trinquet E, et al. Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J 2011; 30: 32–42. CASPubMed Google Scholar
Brock C, Oueslati N, Soler S, Boudier L, Rondard P, Pin JP . Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. J Biol Chem 2007; 282: 33000–8. CASPubMed Google Scholar
Tateyama M, Abe H, Nakata H, Saito O, Kubo Y . Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1alpha. Nat Struct Mol Biol 2004; 11: 637–42. CASPubMed Google Scholar
Tateyama M, Kubo Y . Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1alpha. Proc Natl Acad Sci U S A 2006; 103: 1124–8. CASPubMedPubMed Central Google Scholar
Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knopfel T . Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proc Natl Acad Sci U S A 2009; 106: 11388–93. CASPubMedPubMed Central Google Scholar
Pin JP, Joly C, Heinemann SF, Bockaert J . Domains involved in the specificity of G protein activation in phospholipase C-coupled metabotropic glutamate receptors. EMBO J 1994; 13: 342–8. CASPubMedPubMed Central Google Scholar
Bai M, Trivedi S, Brown EM . Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 1998; 273: 23605–10. CASPubMed Google Scholar
Yamashita T, Terakita A, Shichida Y . The second cytoplasmic loop of metabotropic glutamate receptor functions at the third loop position of rhodopsin. J Biochem 2001; 130: 149–55. CASPubMed Google Scholar
Frauli M, Hubert N, Schann S, Triballeau N, Bertrand HO, Acher F, et al. Amino-pyrrolidine tricarboxylic acids give new insight into group III metabotropic glutamate receptor activation mechanism. Mol Pharmacol 2007; 71: 704–12. CASPubMed Google Scholar
Brauner-Osborne H, Wellendorph P, Jensen AA . Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr Drug Targets 2007; 8: 169–84. PubMed Google Scholar
Hu J, Reyes-Cruz G, Chen W, Jacobson KA, Spiegel AM . Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem 2002; 277: 46622–31. CASPubMed Google Scholar
Petrel C, Kessler A, Maslah F, Dauban P, Dodd RH, Rognan D, et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. J Biol Chem 2003; 278: 49487–94. CASPubMed Google Scholar
Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M . Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 2004; 279: 18990–7. CASPubMed Google Scholar
Hu J, McLarnon SJ, Mora S, Jiang J, Thomas C, Jacobson KA, et al. A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem 2005; 280: 5113–20. CASPubMed Google Scholar
Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, et al. The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 2000; 275: 33750–8. CASPubMed Google Scholar
Malherbe P, Kratochwil N, Knoflach F, Zenner MT, Kew JN, Kratzeisen C, et al. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem 2003; 278: 8340–7. CASPubMed Google Scholar
Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 2003; 64: 823–32. CASPubMed Google Scholar
Zhang F, Klebansky B, Fine RM, Liu H, Xu H, Servant G, et al. Molecular mechanism of the sweet taste enhancers. Proc Natl Acad Sci U S A 2010; 107: 4752–7. CASPubMedPubMed Central Google Scholar
Triballeau N, Acher F, Brabet I, Pin JP, Bertrand HO . Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 2005; 48: 2534–47. CASPubMed Google Scholar
Selvam C, Oueslati N, Lemasson IA, Brabet I, Rigault D, Courtiol T, et al. A virtual screening hit reveals new possibilities for developing group III metabotropic glutamate receptor agonists. J Med Chem 2010; 53: 2797–813. CASPubMed Google Scholar
Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, et al. Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 2005; 280: 34296–305. CASPubMed Google Scholar
Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 2005; 280: 15238–46. CASPubMed Google Scholar
Gregory KJ, Dong EN, Meiler J, Conn PJ . Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 2011; 60: 66–81. CASPubMed Google Scholar
Muhlemann A, Ward NA, Kratochwil N, Diener C, Fischer C, Stucki A, et al. Determination of key amino acids implicated in the actions of allosteric modulation by 3,3'-difluorobenzaldazine on rat mGlu5 receptors. Eur J Pharmacol 2006; 529: 95–104. PubMed Google Scholar
Chen Y, Goudet C, Pin JP, Conn PJ . N-{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hy droxybenzamide (CPPHA) acts through a novel site as a positive allosteric modulator of group 1 metabotropic glutamate receptors. Mol Pharmacol 2008; 73: 909–18. CASPubMed Google Scholar
Litschig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 1999; 55: 453–61. CASPubMed Google Scholar
Knoflach F, Mutel V, Jolidon S, Kew JN, Malherbe P, Vieira E, et al. Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci U S A 2001; 98: 13402–7. CASPubMedPubMed Central Google Scholar
Hemstapat K, de Paulis T, Chen Y, Brady AE, Grover VK, Alagille D, et al. A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators. Mol Pharmacol 2006; 70: 616–26. CASPubMed Google Scholar
Rowe BA, Schaffhauser H, Morales S, Lubbers LS, Bonnefous C, Kamenecka TM, et al. Transposition of three amino acids transforms the human metabotropic glutamate receptor (mGluR)-3-positive allosteric modulation site to mGluR2, and additional characterization of the mGluR2-positive allosteric modulation site. J Pharmacol Exp Ther 2008; 326: 240–51. CASPubMed Google Scholar
Grillon C, Cordova J, Levine LR . Morgan CA 3rd . Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl) 2003; 168: 446–54. CAS Google Scholar
Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13: 1102–7. CASPubMed Google Scholar
Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD . Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 2005; 4: 131–44. CASPubMed Google Scholar
Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, et al. Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 2001; 60: 963–71. CASPubMed Google Scholar
DeLapp NW . The antibody-capture [35S]GTPgammaS scintillation proximity assay: a powerful emerging technique for analysis of GPCR pharmacology. Trends Pharmacol Sci 2004; 25: 400–1. CASPubMed Google Scholar
Matsushita S, Nakata H, Kubo Y, Tateyama M . Ligand-induced rearrangements of the GABAB receptor revealed by fluorescence resonance energy transfer. J Biol Chem 2010; 285: 10291–9. CASPubMedPubMed Central Google Scholar
Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L . The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem 2004; 279: 29085–91. CASPubMed Google Scholar
Tu H, Rondard P, Xu C, Bertaso F, Cao F, Zhang X, et al. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 2007; 19: 1996–2002. CASPubMed Google Scholar
Urwyler S, Pozza MF, Lingenhoehl K, Mosbacher J, Lampert C, Froestl W, et al. N,N′-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 2003; 307: 322–30. CASPubMed Google Scholar
Malherbe P, Masciadri R, Norcross RD, Knoflach F, Kratzeisen C, Zenner MT, et al. Characterization of (R,S)-5,7-di-_tert_-butyl-3-hydroxy-3-trifluoromethyl-3_H_-benzofuran-2-one as a positive allosteric modulator of GABAB receptors. Br J Pharmacol 2008; 154: 797–811. CASPubMedPubMed Central Google Scholar
Kerr DI, Ong J, Puspawati NM, Prager RH . Arylalkylamines are a novel class of positive allosteric modulators at GABAB receptors in rat neocortex. Eur J Pharmacol 2002; 451: 69–77. CASPubMed Google Scholar
Kerr DI, Ong J . Potentiation of metabotropic GABAB receptors by _L_-amino acids and dipeptides in rat neocortex. Eur J Pharmacol 2003; 468: 103–8. CASPubMed Google Scholar
Wise A, Green A, Main MJ, Wilson R, Fraser N, Marshall FH . Calcium sensing properties of the GABAB receptor. Neuropharmacology 1999; 38: 1647–56. CASPubMed Google Scholar
Galvez T, Urwyler S, Prezeau L, Mosbacher J, Joly C, Malitschek B, et al. Ca2+ requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABAB receptors: involvement of serine 269 of the GABABR1 subunit. Mol Pharmacol 2000; 57: 419–26. CASPubMed Google Scholar
Brauner-Osborne H, Jensen AA, Sheppard PO, O'Hara P, Krogsgaard-Larsen P . The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J Biol Chem 1999; 274: 18382–6. CASPubMed Google Scholar
Zhang Z, Qiu W, Quinn SJ, Conigrave AD, Brown EM, Bai M . Three adjacent serines in the extracellular domains of the CaR are required for _L_-amino acid-mediated potentiation of receptor function. J Biol Chem 2002; 277: 33727–35. CASPubMed Google Scholar
Saidak Z, Brazier M, Kamel S, Mentaverri R . Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol Pharmacol 2009; 76: 1131–44. CASPubMed Google Scholar
Silve C, Petrel C, Leroy C, Bruel H, Mallet E, Rognan D, et al. Delineating a Ca2+ binding pocket within the Venus flytrap module of the human calcium-sensing receptor. J Biol Chem 2005; 280: 37917–23. CASPubMed Google Scholar
Arey BJ, Seethala R, Ma Z, Fura A, Morin J, Swartz J, et al. A novel calcium-sensing receptor antagonist transiently stimulates parathyroid hormone secretion in vivo. Endocrinology 2005; 146: 2015–22. CASPubMed Google Scholar
Fitzpatrick LA, Smith PL, McBride TA, Fries MA, Hossain M, Dabrowski CE, et al. Ronacaleret, a calcium-sensing receptor antagonist, has no significant effect on radial fracture healing time: Results of a randomized, double-blinded, placebo-controlled Phase II clinical trial. Bone 2011; 49: 845–52. CASPubMed Google Scholar