No death without life: vital functions of apoptotic effectors (original) (raw)
Lockshin RA, Williams CM . Programmed Cell Death--I. Cytology Of Degeneration In The Intersegmental Muscles Of The Pernyi Silkmoth. J Insect Physiol 1965; 11: 123–133. ArticleCASPubMed Google Scholar
Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G . Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 2002; 265: 39–47. CASPubMed Google Scholar
Kroemer G, Galluzzi L, Brenner C . Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163. ArticleCASPubMed Google Scholar
Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005; 12 (Suppl 2): 1463–1467. CASPubMed Google Scholar
Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14: 1237–1243. CASPubMed Google Scholar
Horvitz HR . Nobel lecture. Worms, life and death. Biosci Rep 2003; 23: 239–303. CASPubMed Google Scholar
Garrido C, Kroemer G . Life's smile, death's grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 2004; 16: 639–646. CASPubMed Google Scholar
Martinon F, Tschopp J . Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007; 14: 10–22. CASPubMed Google Scholar
Martinon F, Tschopp J . Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004; 117: 561–574. CASPubMed Google Scholar
Taylor RC, Cullen SP, Martin SJ . Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; in press.
Marzo I, Susin SA, Petit PX, Ravagnan L, Brenner C, Larochette N et al. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 1998; 427: 198–202. CASPubMed Google Scholar
Zhivotovsky B, Orrenius S . Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 2005; 331: 859–867. CASPubMed Google Scholar
Zhang Y, Padalecki SS, Chaudhuri AR, De Waal E, Goins BA, Grubbs B et al. Caspase-2 deficiency enhances aging-related traits in mice. Mech Ageing Dev 2007; 128: 213–221. CASPubMed Google Scholar
Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 2004; 114: 1704–1713. CASPubMedPubMed Central Google Scholar
Weil M, Raff MC, Braga VM . Caspase activation in the terminal differentiation of human epidermal keratinocytes. Curr Biol 1999; 9: 361–364. CASPubMed Google Scholar
Wride MA, Parker E, Sanders EJ . Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev Biol 1999; 213: 142–156. CASPubMed Google Scholar
Daugas E, Cande C, Kroemer G . Erythrocytes: death of a mummy. Cell Death Differ 2001; 8: 1131–1133. CASPubMed Google Scholar
Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med 2001; 193: 247–254. CASPubMedPubMed Central Google Scholar
Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 2007; 445: 102–105. CASPubMed Google Scholar
Krauss SW, Lo AJ, Short SA, Koury MJ, Mohandas N, Chasis JA . Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 2005; 106: 2200–2205. CASPubMedPubMed Central Google Scholar
Clarke MC, Savill J, Jones DB, Noble BS, Brown SB . Compartmentalized megakaryocyte death generates functional platelets committed to caspase-independent death. J Cell Biol 2003; 160: 577–587. CASPubMedPubMed Central Google Scholar
De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 2002; 100: 1310–1317. CASPubMed Google Scholar
Braun T, Carvalho G, Grosjean J, Ades L, Fabre C, Boehrer S et al. Differentiating megakaryocytes in myelodysplastic syndromes succumb to mitochondrial derangement without caspase activation. Apoptosis 2007; 12: 1101–1108. CASPubMed Google Scholar
Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W et al. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 2002; 100: 4446–4453. CASPubMed Google Scholar
Rebe C, Cathelin S, Launay S, Filomenko R, Prevotat L, L'Ollivier C et al. Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation. Blood 2007; 109: 1442–1450. CASPubMed Google Scholar
Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B . Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 2004; 11: 90–98. CASPubMed Google Scholar
Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Siegel RM et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002; 419: 395–399. CASPubMed Google Scholar
Salmena L, Lemmers B, Hakem A, Matysiak-Zablocki E, Murakami K, Au PY et al. Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 2003; 17: 883–895. CASPubMedPubMed Central Google Scholar
Beisner DR, Chu IH, Arechiga AF, Hedrick SM, Walsh CM . The requirements for Fas-associated death domain signaling in mature T cell activation and survival. J Immunol 2003; 171: 247–256. CASPubMed Google Scholar
Ben Moshe T, Barash H, Kang TB, Kim JC, Kovalenko A, Gross E et al. Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology 2007; 45: 1014–1024. CASPubMed Google Scholar
Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 2004; 173: 2976–2984. CASPubMed Google Scholar
Zhu S, Hsu AP, Vacek MM, Zheng L, Schaffer AA, Dale JK et al. Genetic alterations in caspase-10 may be causative or protective in autoimmune lymphoproliferative syndrome. Hum Genet 2006; 119: 284–294. CASPubMed Google Scholar
Shikama Y, Yamada M, Miyashita T . Caspase-8 and caspase-10 activate NF-kappaB through RIP, NIK and IKKalpha kinases. Eur J Immunol 2003; 33: 1998–2006. ArticleCASPubMed Google Scholar
Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J . Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 1998; 92: 501–509. CASPubMed Google Scholar
Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 2007; 9: 276–286. CASPubMed Google Scholar
Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98–103. CASPubMed Google Scholar
Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004; 429: 75–79. CASPubMed Google Scholar
Eckhart L, Declercq W, Ban J, Rendl M, Lengauer B, Mayer C et al. Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 2000; 115: 1148–1151. CASPubMed Google Scholar
Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007; 9: 666–674. CASPubMed Google Scholar
Green DR, Kroemer G . The pathophysiology of mitochondrial cell death. Science 2004; 305: 626–629. CASPubMed Google Scholar
Ferri KF, Kroemer G . Mitochondria – the suicide organelles. Bioessays 2001; 23: 111–115. CASPubMed Google Scholar
Saraste M . Oxidative phosphorylation at the fin de siecle. Science 1999; 283: 1488–1493. CASPubMed Google Scholar
Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G . To die or not to die: that is the autophagic question. Curr Mol Med 2008; in press.
Oberstein A, Jeffrey PD, Shi Y . Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 2007; 282: 13123–13132. CASPubMed Google Scholar
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939. CASPubMed Google Scholar
Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA et al. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 2007; 3: 374–376. CASPubMed Google Scholar
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 2007; 26: 2527–2539. CASPubMedPubMed Central Google Scholar
Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A . Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 2007; 14: 500–510. CASPubMed Google Scholar
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752. CASPubMed Google Scholar
Pinton P, Rizzuto R . Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 2006; 13: 1409–1418. CASPubMed Google Scholar
Oakes SA, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2005; 102: 105–110. CASPubMed Google Scholar
White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB et al. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 2005; 7: 1021–1028. CASPubMedPubMed Central Google Scholar
Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C . Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 2004; 383: 361–370. CASPubMedPubMed Central Google Scholar
Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L . Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 2003; 66: 1335–1340. CASPubMed Google Scholar
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135–139. CASPubMed Google Scholar
Demaurex N, Distelhorst C . Cell biology. Apoptosis – the calcium connection. Science 2003; 300: 65–67. CASPubMed Google Scholar
Jiao J, Huang X, Feit-Leithman RA, Neve RL, Snider W, Dartt DA et al. Bcl-2 enhances Ca(2+) signaling to support the intrinsic regenerative capacity of CNS axons. EMBO J 2005; 24: 1068–1078. CASPubMedPubMed Central Google Scholar
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007; 25: 193–205. PubMed Google Scholar
Perfettini J, Roumier T, Kroemer G . Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol 2005; 15: 179–183. CASPubMed Google Scholar
Germain M, Mathai JP, McBride HM, Shore GC . Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 2005; 24: 1546–1556. CASPubMedPubMed Central Google Scholar
Wasiak S, Zunino R, McBride HM . Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177: 439–450. CASPubMedPubMed Central Google Scholar
Zamzami N, El Hamel C, Maisse C, Brenner C, Munoz-Pinedo C, Belzacq AS et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000; 19: 6342–6350. CASPubMed Google Scholar
Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L et al. Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 2005; 122: 593–603. CASPubMed Google Scholar
Hosler JP, Ferguson-Miller S, Mills DA . Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 2006; 75: 165–187. CASPubMedPubMed Central Google Scholar
Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 2000; 101: 389–399. CASPubMed Google Scholar
Cain K, Bratton SB, Cohen GM . The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 2002; 84: 203–214. CASPubMed Google Scholar
Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G . Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 2006; 13: 1423–1433. CASPubMed Google Scholar
Arama E, Agapite J, Steller H . Caspase activity and a specific cytochrome c are required for sperm differentiation in Drosophila. Dev Cell 2003; 4: 687–697. CASPubMed Google Scholar
Woo M, Hakem R, Furlonger C, Hakem A, Duncan GS, Sasaki T et al. Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 2003; 4: 1016–1022. CASPubMed Google Scholar
Yang JY, Widmann C . A subset of caspase substrates functions as the Jekyll and Hyde of apoptosis. Eur Cytokine Netw 2002; 13: 404–406. CASPubMed Google Scholar
Joza N, Pospisilik JA, Benit P, Rangachari M, Nakashima Y, Rustin P et al. The molecular archeology of a caspase-independent death effector: AIF in Drosophila. Cell Death Differ 2008; in press.
Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001; 276: 16391–16398. CASPubMed Google Scholar
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446. CASPubMed Google Scholar
Modjtahedi N, Giordanetto F, Madeo F, Kroemer G . Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 2006; 16: 264–272. CASPubMed Google Scholar
Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 2004; 23: 1514–1521. CASPubMed Google Scholar
Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia–ischemia. J Exp Med 2007; 204: 1741–1748. CASPubMedPubMed Central Google Scholar
Cande C, Vahsen N, Metivier D, Tourriere H, Chebli K, Garrido C et al. Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci 2004; 117: 4461–4468. CASPubMed Google Scholar
Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N et al. Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 2005; 25: 10261–10272. CASPubMedPubMed Central Google Scholar
Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N et al. AIF deficiency compromises oxidative phosphorylation. EMBO J 2004; 23: 4679–4689. CASPubMedPubMed Central Google Scholar
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002; 419: 367–374. CASPubMed Google Scholar
Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 2007; 131: 476–491. CASPubMed Google Scholar
Li LY, Luo X, Wang X . Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95–99. CASPubMed Google Scholar
Huang KJ, Ku CC, Lehman IR . Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc Natl Acad Sci USA 2006; 103: 8995–9000. CASPubMedPubMed Central Google Scholar
Storchova Z, Breneman A, Cande J, Dunn J, Burbank K, O'Toole E et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 2006; 443: 541–547. CASPubMed Google Scholar
Buttner S, Carmona-Gutierrez D, Vitale I, Castedo M, Ruli D, Eisenberg T et al. Depletion of endonuclease G selectively kills polyploid cells. Cell Cycle 2007; 6: 1072–1076. PubMed Google Scholar
Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 2000; 267: 5699–5710. CASPubMed Google Scholar
Lipinska B, Zylicz M, Georgopoulos C . The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol 1990; 172: 1791–1797. CASPubMedPubMed Central Google Scholar
Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002; 277: 445–454. CASPubMed Google Scholar
Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R . A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001; 8: 613–621. CASPubMed Google Scholar
Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C . Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 2003; 17: 1487–1496. CASPubMedPubMed Central Google Scholar
Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K et al. Proteome-wide Identification of HtrA2/Omi Substrates. J Proteome Res 2007; 6: 1006–1015. CASPubMed Google Scholar
Kuninaka S, Iida SI, Hara T, Nomura M, Naoe H, Morisaki T et al. Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 2007; 26: 2395–2406. CASPubMed Google Scholar
Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 2003; 425: 721–727. CASPubMed Google Scholar
Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 2004; 24: 9848–9862. CASPubMedPubMed Central Google Scholar
Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 2007; 9: 1243–1252. CASPubMed Google Scholar
Vaux DL, Silke J . HtrA2/Omi, a sheep in wolf's clothing. Cell 2003; 115: 251–253. CASPubMed Google Scholar
Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53. CASPubMed Google Scholar
Du C, Fang M, Li Y, Li L, Wang X . Smac, a mitochondrial protein that promotes cytochrome _c_-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42. CASPubMed Google Scholar
Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012. CASPubMed Google Scholar
Vaux DL, Silke J . Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003; 304: 499–504. CASPubMed Google Scholar
Okada H, Suh WK, Jin J, Woo M, Du C, Elia A et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 2002; 22: 3509–3517. CASPubMedPubMed Central Google Scholar
Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES et al. Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 2003; 22: 1589–1599. CASPubMed Google Scholar
Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME . Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 2002; 22: 207–220. CASPubMedPubMed Central Google Scholar
Tinel A, Tschopp J . The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304: 843–846. CASPubMed Google Scholar
Berube C, Boucher LM, Ma W, Wakeham A, Salmena L, Hakem R et al. Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD. Proc Natl Acad Sci USA 2005; 102: 14314–14320. CASPubMedPubMed Central Google Scholar
Zermati Y, Mouhamad S, Stergiou L, Besse B, Galluzzi L, Boehrer S et al. Nonapoptotic role for apaf-1 in the DNA damage checkpoint. Mol Cell 2007; 28: 624–637. CASPubMed Google Scholar
Mouhamad S, Galluzzi L, Zermati Y, Castedo M, Kroemer G . Apaf-1 deficiency causes chromosomal instability. Cell Cycle 2007; 6: 3103–3107. CASPubMed Google Scholar
Park SM, Schickel R, Peter ME . Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 2005; 17: 610–616. CASPubMed Google Scholar
Yeh WC, Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279: 1954–1958. CASPubMed Google Scholar
Walsh CM, Wen BG, Chinnaiyan AM, O'Rourke K, Dixit VM, Hedrick SM . A role for FADD in T cell activation and development. Immunity 1998; 8: 439–449. CASPubMed Google Scholar
Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J . Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 2005; 175: 3033–3044. CASPubMed Google Scholar
Pellegrini M, Bath S, Marsden VS, Huang DC, Metcalf D, Harris AW et al. FADD and caspase-8 are required for cytokine-induced proliferation of hemopoietic progenitor cells. Blood 2005; 106: 1581–1589. CASPubMedPubMed Central Google Scholar
Arechiga AF, Bell BD, Leverrier S, Weist BM, Porter M, Wu Z et al. A Fas-associated death domain protein/caspase-8-signaling axis promotes S-phase entry and maintains S6 kinase activity in T cells responding to IL-2. J Immunol 2007; 179: 5291–5300. CASPubMed Google Scholar
Sheikh MS, Huang Y . The FADD is going nuclear. Cell Cycle 2003; 2: 346–347. CASPubMed Google Scholar
Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE et al. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19: 321–332. CASPubMed Google Scholar
Balachandran S, Venkataraman T, Fisher PB, Barber GN . Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 2007; 178: 2429–2439. CASPubMed Google Scholar
Micheau O, Tschopp J . Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114: 181–190. CASPubMed Google Scholar
Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK et al. Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 2006; 26: 3505–3513. CASPubMedPubMed Central Google Scholar
Bender LM, Morgan MJ, Thomas LR, Liu ZG, Thorburn A . The adaptor protein TRADD activates distinct mechanisms of apoptosis from the nucleus and the cytoplasm. Cell Death Differ 2005; 12: 473–481. CASPubMed Google Scholar
Janssens S, Tinel A, Lippens S, Tschopp J . PIDD mediates NF-kappaB activation in response to DNA damage. Cell 2005; 123: 1079–1092. CASPubMed Google Scholar
Tinel A, Janssens S, Lippens S, Cuenin S, Logette E, Jaccard B et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 2007; 26: 197–208. CASPubMed Google Scholar
Cuenin S, Tinel A, Janssens S, Tschopp J . p53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 2008; 27: 387–396. CASPubMed Google Scholar
Felmer R, Horvat S, Clinton M, Clark AJ . Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes. Cell Prolif 2003; 36: 45–54. CASPubMedPubMed Central Google Scholar
Motaln H, McWhir J, Horvat S . In situ analysis of Raidd-beta-galactosidase fusion gene expression in transgenic mouse midgestation embryos. Transgenic Res 2005; 14: 27–40. CASPubMed Google Scholar
Zamzami N, Larochette N, Kroemer G . Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 2005; 12 (Suppl 2): 1478–1480. CASPubMed Google Scholar
Brenner C, Grimm S . The permeability transition pore complex in cancer cell death. Oncogene 2006; 25: 4744–4756. CASPubMed Google Scholar
Vieira HL, Belzacq AS, Haouzi D, Bernassola F, Cohen I, Jacotot E et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 2001; 20: 4305–4316. CASPubMed Google Scholar
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434: 652–658. CASPubMed Google Scholar
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434: 658–662. CASPubMed Google Scholar
Galluzzi L, Kroemer G . Mitochondrial apoptosis without VDAC. Nat Cell Biol 2007; 9: 487–489. CASPubMed Google Scholar
Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD . Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007; 9: 550–555. CASPubMedPubMed Central Google Scholar
Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004; 427: 461–465. CASPubMedPubMed Central Google Scholar
Belzacq AS, Brenner C . The adenine nucleotide translocator: a new potential chemotherapeutic target. Curr Drug Targets 2003; 4: 517–524. CASPubMed Google Scholar
Colombini M . Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 1989; 111: 103–111. CASPubMed Google Scholar
Gothel SF, Marahiel MA . Peptidyl-prolyl cis–trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 1999; 55: 423–436. CASPubMed Google Scholar
Schlattner U, Tokarska-Schlattner M, Wallimann T . Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 2006; 1762: 164–180. CASPubMed Google Scholar
Papadopoulo V . Peripheral benzodiazepine receptor: structure and function in health and disease. Ann Pharm Fr 2003; 61: 30–50. Google Scholar
Wilson JE . Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 2003; 206: 2049–2057. CASPubMed Google Scholar
Delivani P, Adrain C, Taylor RC, Duriez PJ, Martin SJ . Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 2006; 21: 761–773. CASPubMed Google Scholar
Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol 2004; 166: 969–974. CASPubMedPubMed Central Google Scholar
Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M et al. A caspase-related protease regulates apoptosis in yeast. Mol Cell 2002; 9: 911–917. CASPubMed Google Scholar
Lim HW, Kim SJ, Park EH, Lim CJ . Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can J Microbiol 2007; 53: 1016–1023. CASPubMed Google Scholar
Ambit A, Fasel N, Coombs GH, Mottram JC . An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 2008; 15: 113–122. CASPubMed Google Scholar
Siegel RM . Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol 2006; 6: 308–317. CASPubMed Google Scholar