Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats (original) (raw)
Mancia G, Grassi G, Giannattasio C, Seravalle G . Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–728. ArticleCASPubMed Central Google Scholar
Levick SP, Murray DB, Janicki JS, Brower GL . Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension 2010; 55: 270–276. ArticleCASPubMed Central Google Scholar
Fisher JP, Fadel PJ . Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension. Exp Physiol 2010; 95: 572–580. ArticleCASPubMed Central Google Scholar
Grassi G, Seravalle G, Quarti-Trevano F . The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 2010; 95: 581–586. ArticlePubMed Central Google Scholar
Benarroch EE . Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 2005; 15: 254–263. ArticlePubMed Central Google Scholar
Allen AM . Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 2002; 39: 275–280. ArticleCASPubMed Central Google Scholar
Li DP, Pan HL . Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 2007; 49: 916–925. ArticleCASPubMed Central Google Scholar
Ciriello J, Kline RL, Zhang TX, Caverson MM . Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 1984; 310: 355–359. ArticleCASPubMed Central Google Scholar
Takeda K, Nakata T, Takesako T, Itoh H, Hirata M, Kawasaki S et al. Sympathetic inhibition and attenuation of spontaneous hypertension by PVN lesions in rats. Brain Res 1991; 543: 296–300. ArticleCASPubMed Central Google Scholar
Reja V, Goodchild AK, Phillips JK, Pilowsky PM . Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol 2006; 33: 690–695. ArticleCASPubMed Central Google Scholar
Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY et al. AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96: 94–103. ArticleCASPubMed Central Google Scholar
Davisson RL, Oliverio MI, Coffman TM, Sigmund CD . Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 2000; 106: 103–106. ArticleCASPubMed Central Google Scholar
Northcott CA, Watts S, Chen Y, Morris M, Chen A, Haywood JR . Adenoviral inhibition of AT1a receptors in the paraventricular nucleus inhibits acute increases in mean arterial blood pressure in the rat. Am J Physiol Regul Integr Comp Physiol 2010; 299: R1202–R1211. ArticleCAS Google Scholar
Goldstein DS . Plasma catecholamines and essential hypertension. An analytical review. Hypertension 1983; 5: 86–99. ArticleCAS Google Scholar
Tsoporis J, Leenen FH . Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats. Hypertension 1988; 11: 376–386. ArticleCAS Google Scholar
Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W et al. Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol 2009; 94: 785–794. Article Google Scholar
Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes III J et al. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham Study. Circulation 1987; 75: I26–I33. CASPubMed Google Scholar
Weber KT, Brilla CG . Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849–1865. ArticleCAS Google Scholar
Owens GK, Schwartz SM, McCanna M . Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats. Hypertension 1988; 11: 198–207. ArticleCASPubMed Central Google Scholar
Intengan HD, Schiffrin EL . Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 2001; 38: 581–587. ArticleCASPubMed Central Google Scholar
Smeda JS, Lee RM, Forrest JB . Prenatal and postnatal hydralazine treatment does not prevent renal vessel wall thickening in SHR despite the absence of hypertension. Circ Res 1988; 63: 534–542. ArticleCASPubMed Central Google Scholar
Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP . Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999–2005. ArticlePubMed Central Google Scholar
Chen YF, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC et al. Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 2006; 47: 230–237. ArticleCASPubMed Central Google Scholar
Makino N, Sugano M, Ohtsuka S, Sawada S, Hata T . Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc Res 1999; 44: 543–548. ArticleCASPubMed Central Google Scholar
Averill DB, Tsuchihashi T, Khosla MC, Ferrario CM . Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitatory responses evoked by angiotensin II and L-glutamate in rostral ventrolateral medulla. Brain Res 1994; 665: 245–252. ArticleCASPubMed Central Google Scholar
Saad WA, Camargo LA, Guarda IF, Santos TA . Subfornical organ mediates pressor effect of angiotensin: Influence of nitric oxide synthase inhibitors, AT(1) and AT(2) angiotensin antagonist's receptors. J Am Soc Hypertens 2008; 2: 326–331. ArticlePubMed Central Google Scholar
Katsunuma N, Tsukamoto K, Ito S, Kanmatsuse K . Enhanced angiotensin-mediated responses in the nucleus tractus solitarii of spontaneously hypertensive rats. Brain Res Bull 2003; 60: 209–214. ArticleCASPubMed Central Google Scholar
Kubo T, Hagiwara Y, Endo S, Fukumori R . Activation of hypothalamic angiotensin receptors produces pressor responses via cholinergic inputs to the rostral ventrolateral medulla in normotensive and hypertensive rats. Brain Res 2002; 953: 232–245. ArticleCASPubMed Central Google Scholar
Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ . A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993; 3: 219–223. ArticleCASPubMed Central Google Scholar
Toscano MG, Romero Z, Munoz P, Cobo M, Benabdellah K, Martin F . Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther 2011; 18: 117–127. ArticleCASPubMed Central Google Scholar
Lenkei Z, Corvol P, Llorens-Cortes C . The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Brain Res Mol Brain Res 1995; 30: 53–60. ArticleCASPubMed Central Google Scholar
Vazquez J, Correa de Adjounian MF, Sumners C, Gonzalez A, ez-Freire C, Raizada MK . Selective silencing of angiotensin receptor subtype 1a (AT1aR) by RNA interference. Hypertension 2005; 45: 115–119. ArticleCASPubMed Central Google Scholar
Bains JS, Potyok A, Ferguson AV . Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res 1992; 599: 223–229. ArticleCAS Google Scholar
Georgiadis A, Tschernutter M, Bainbridge JW, Robbie SJ, McIntosh J, Nathwani AC et al. AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Ther 2010; 17: 486–493. ArticleCAS Google Scholar
Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W . Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 2008; 148: 684–693. ArticleCASPubMed Central Google Scholar
McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008; 105: 5868–5873. ArticleCAS Google Scholar
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006; 20: 515–524. ArticleCAS Google Scholar
Shi Z, Chen AD, Xu Y, Chen Q, Gao XY, Wang W et al. Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 2009; 458: 247–257. ArticleCAS Google Scholar
Bello RM, Li H, Sun Z . Heart-specific inhibition of protooncogene c-myc attenuates cold-induced cardiac hypertrophy. Gene Ther 2007; 14: 1406–1416. Article Google Scholar
Gao S, Long CL, Wang RH, Wang H . K(ATP) activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovasc Res 2009; 83: 444–456. ArticleCASPubMed Central Google Scholar
Bagnost T, Ma L, da Silva RF, Rezakhaniha R, Houdayer C, Stergiopulos N et al. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res 2010; 87: 569–577. ArticleCASPubMed Central Google Scholar
Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T . Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 2009; 119: 978–986. ArticleCASPubMed Central Google Scholar