A high salt diet inhibits obesity and delays puberty in the female rat (original) (raw)
Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2014; 384: 766–781. PubMedPubMed Central Google Scholar
Ogden CL, Carroll MD, Flegal KM . Epidemiologic trends in overweight and obesity. Endocrinol Metab Clin North Am 2003; 32: 741–760. ArticlePubMed Google Scholar
Simmonds M, Llewellyn A, Owen CG, Woolacott N . Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev 2016; 17: 95–107. ArticleCASPubMed Google Scholar
Dunger DB, Ahmed ML, Ong KK . Effects of obesity on growth and puberty. Best Pract Res Clin Endocrinol Metab 2005; 19: 375–390. ArticleCASPubMed Google Scholar
Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol 2014; 32: 3568–3574. ArticlePubMedPubMed Central Google Scholar
Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898–918. ArticlePubMed Google Scholar
Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR . Energy balance and its components: implications for body weight regulation. Am J Clin Nutr 2012; 95: 989–994. ArticlePubMedPubMed Central Google Scholar
Stenvinkel P . Obesity a disease with many aetiologies disguised in the same oversized phenotype: has the overeating theory failed? Nephrol Dial Transplant 2015; 30: 1656–1664. ArticleCASPubMed Google Scholar
Popkin BM, Adair LS, Ng SW . Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012; 70: 3–21. ArticlePubMed Google Scholar
Song HJ, Cho YG, Lee H-J . Dietary sodium intake and prevalence of overweight in adults. Metabolism 2013; 62: 703–708. ArticleCASPubMed Google Scholar
Zhu H, Pollock NK, Kotak I, Gutin B, Wang X, Bhagatwala J et al. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics 2014; 133: e635–e642. ArticlePubMedPubMed Central Google Scholar
Hoffmann IS, Cubeddu LX . Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 2009; 19: 123–128. ArticleCASPubMed Google Scholar
Dobrian AD, Schriver SD, Lynch T, Prewitt RL . Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am J Physiol Renal Physiol 2003; 285: F619–F628. ArticleCASPubMed Google Scholar
Fonseca-Alaniz MH, Brito LC, Borges-Silva CN, Takada J, Andreotti S, Lima FB . High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity 2007; 15: 2200–2208. ArticleCASPubMed Google Scholar
Fonseca-Alaniz MH, Takada J, Andreotti S, de Campos TBF, Campaña AB, Borges-Silva CN et al. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity 2008; 16: 1186–1192. ArticleCASPubMed Google Scholar
Weidemann BJ, Voong S, Morales-Santiago FI, Kahn MZ, Ni J, Littlejohn NK et al. Dietary sodium suppresses digestive efficiency via the renin–angiotensin system. Sci Rep 2015; 5: 11123. ArticleCASPubMedPubMed Central Google Scholar
DeClercq VC, Goldsby JS, McMurray DN, Chapkin RS . Distinct adipose depots from mice differentially respond to a high-fat, high-salt diet. J Nutr 2016; 146: 1189–1196. ArticleCASPubMedPubMed Central Google Scholar
Baker MS, Li G, Kohorst JJ, Waterland RA . Fetal growth restriction promotes physical inactivity and obesity in female mice. International J Obes 2015; 39: 98–104. ArticleCAS Google Scholar
Kaplowitz PB . Link between body fat and the timing of puberty. Pediatrics 2008; 121: S208–S217. ArticlePubMed Google Scholar
Kaplowitz PB, Slora EJ, Wasserman RC, Pedlow SE, Herman-Giddens ME . Earlier onset of puberty in girls: relation to increased body mass index and race. Pediatrics 2001; 108: 347–353. ArticleCASPubMed Google Scholar
Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC et al. Onset of breast development in a longitudinal cohort. Pediatrics 2013; 132: 1019–1027. ArticlePubMedPubMed Central Google Scholar
Aksglaede L, Sorensen K, Petersen JH, Skakkebaek NE, Juul A . Recent decline in age at breast development: the Copenhagen puberty study. Pediatrics 2009; 123: e932–e939. ArticlePubMed Google Scholar
Deardorff J, Gonzales NA, Christopher FS, Roosa MW, Millsap RE . Early puberty and adolescent pregnancy: the influence of alcohol use. Pediatrics 2005; 116: 1451–1456. ArticlePubMed Google Scholar
Ge X, Conger RD, Elder GH . Coming of age too early: pubertal influences on girls' vulnerability to psychological distress. Child Dev 1996; 67: 3386–3400. ArticleCASPubMed Google Scholar
Williams RM, Ong KK, Dunger DB . Polycystic ovarian syndrome during puberty and adolescence. Mol Cell Endocrinol 2013; 373: 61–67. ArticleCASPubMed Google Scholar
Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI . Growth patterns and the risk of breast cancer in women. New Engl J Med 2004; 351: 1619–1626. ArticleCASPubMed Google Scholar
Herman-Giddens ME . The enigmatic pursuit of puberty in girls. Pediatrics 2013; 132: 1125–1126. ArticlePubMed Google Scholar
Haley GE, Flynn FW . Tachykinin NK3 receptor contribution to systemic release of vasopressin and oxytocin in response to osmotic and hypotensive challenge. Am J Physiol Regul Integr Comp Physiol 2007; 293: R931–R937. ArticleCASPubMed Google Scholar
Grachev P, Millar RP, O'Byrne KT . The role of neurokinin B signalling in reproductive neuroendocrinology. Neuroendocrinology 2014; 99: 7–17. ArticleCASPubMed Google Scholar
Li XF, Lin YS, Kinsey-Jones JS, O'Byrne KT . High-fat diet increases LH pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology 2012; 153: 4422–4431. ArticleCASPubMed Google Scholar
Porter JP, King SH, Honeycutt AD . Prenatal high-salt diet in the sprague-dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring. Am J Physiol Regul Integr Comp Physiol 2007; 293: R334–R342. ArticleCASPubMed Google Scholar
Makita K, Takahashi K, Karara A, Jacobson HR, Falck JR, Capdevila JH . Experimental and/or genetically controlled alterations of the renal microsomal cytochrome P450 epoxygenase induce hypertension in rats fed a high salt diet. J Clin Investig 1994; 94: 2414–2420. ArticleCASPubMedPubMed Central Google Scholar
Coêlho MS, Passadore MD, Gasparetti AL, Bibancos T, Prada PO, Furukawa LL et al. High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats. Nutr Metab Cardiovasc Dis 2006; 16: 148–155. ArticlePubMed Google Scholar
Lenda DM, Sauls BA, Boegehold MA . Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol Heart Circ Physiol 2000; 279: H7–H14. ArticleCASPubMed Google Scholar
Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL . Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 2001; 37: 554–560. ArticleCASPubMed Google Scholar
Lusk G . The Elements of the Science of Nutrition, 4th edn. W.B. Saunders: Philadelphia, 1928. Google Scholar
Burnett CML, Grobe JL . Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Mol Metab 2014; 3: 460–464. ArticleCASPubMedPubMed Central Google Scholar
Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG . Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol Heart Circ Physiol 1982; 243: H941–H947. ArticleCAS Google Scholar
Bernardis LL . Prediction of carcass fat, water and lean body mass from lee's 'nutritive ratio' in rats with hypothalamic obesity. Experientia 1970; 26: 789–790. ArticleCASPubMed Google Scholar
Hausman DB, Fine JB, Tagra K, Fleming SS, Martin RJ, DiGirolamo M . Regional fat pad growth and cellularity in obese zucker rats: modulation by caloric restriction. Obes Res 2003; 11: 674–682. ArticlePubMed Google Scholar
Hung C-S, Lee J-K, Yang C-Y, Hsieh H-R, Ma W-Y, Lin M-S et al. Measurement of visceral fat: should we include retroperitoneal fat? PLoS One 2014; 9: e112355. ArticlePubMedPubMed Central Google Scholar
Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 2017; 127: 1944–1959. ArticlePubMedPubMed Central Google Scholar
Hariri N, Thibault L . High-fat diet-induced obesity in animal models. Nutr Res Rev 2010; 23: 270–299. ArticleCASPubMed Google Scholar
Boyle CN, Rossier MlM, Lutz TA . Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 2011; 104: 20–28. ArticleCASPubMed Google Scholar
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig 2003; 112: 1821–1830. ArticleCASPubMedPubMed Central Google Scholar
Bao P, Liu G, Wei Y . Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. Int J Clin Exp Med 2015; 8: 13491–13499. CASPubMedPubMed Central Google Scholar
Engelbregt MJ, van Weissenbruch MM, Popp-Snijders C, Lips P, Delemarre-van de Waal HA . Body mass index, body composition, and leptin at onset of puberty in male and female rats after intrauterine growth retardation and after early postnatal food restriction. Pediatr Res 2001; 50: 474–478. ArticleCASPubMed Google Scholar
Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4: 597–609. ArticleCASPubMed Google Scholar
Lin S, Thomas TC, Storlien LH, Huang XF . Development of high fat diet-induced obesity and leptin resistance in C57Bl/6 J mice. Int J Obes 2000; 24: 639–646. ArticleCAS Google Scholar
Assaad H, Yao K, Tekwe CD, Feng S, Bazer FW, Zhou L et al. Analysis of energy expenditure in diet-induced obese rats. Front Biosci 2014; 19: 967–985. Article Google Scholar
Widdowson PS, Upton R, Buckingham R, Arch J, Williams G . Inhibition of food response to intracerebroventricular injection of leptin is attenuated in rats with diet-induced obesity. Diabetes 1997; 46: 1782–1785. ArticleCASPubMed Google Scholar
McClean PL, Irwin N, Cassidy RS, Holst JJ, Gault VA, Flatt PR . GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 2007; 293: E1746–E1755. ArticleCASPubMed Google Scholar
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414–421. ArticleCASPubMed Google Scholar
Frisch RE, Hegsted DM, Yoshinaga K . Body weight and food intake at early estrus of rats on a high-fat diet. Proc Natl Acad Sci 1975; 72: 4172–4176. ArticleCASPubMedPubMed Central Google Scholar
Ramaley JA . Puberty onset in males and females fed a high fat diet. Proc Soc Exp Biol Med 1981; 166: 294–296. ArticleCASPubMed Google Scholar
Lie MEK, Overgaard A, Mikkelsen JD . Effect of a postnatal high-fat diet exposure on puberty onset, estrous cycle regularity, and kisspeptin expression in female rats. Reprod Biol 2013; 13: 298–308. ArticlePubMed Google Scholar
Feng LiX, Lin YS, Kinsey-Jones JS, O'Byrne KT . High-fat diet increases lh pulse frequency and kisspeptin-neurokinin B expression in puberty-advanced female rats. Endocrinology153: 4422–4431.
Ogihara T, Asano T, Ando K, Chiba Y, Sekine N, Sakoda H et al. Insulin resistance with enhanced insulin signaling in high-salt diet fed rats. Diabetes 2001; 50: 573–583. ArticleCASPubMed Google Scholar
Nurkiewicz TR, Boegehold MA . High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007; 292: R1550–R1556. ArticleCASPubMed Google Scholar
Ding Y, Lv J, Mao C, Zhang H, Wang A, Zhu L et al. High-salt diet during pregnancy and angiotensin-related cardiac changes. J Hypertens 2010; 28: 1290–1297. CASPubMedPubMed Central Google Scholar
Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA et al. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2015; 308: R559–R568. ArticleCASPubMedPubMed Central Google Scholar
Cates PS, Forsling ML, O’Byrne KT . Stress-induced suppression of pulsatile luteinising hormone release in the female rat: role of vasopressin. J Neuroendocrinol 1999; 11: 677–683. ArticleCASPubMed Google Scholar
Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM et al. Stimulates GnRH release in the male monkey (Macaca mulatta and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology151: 4494–4503.
Jin C, MacDonell R, Speed J, Pollock D . Synergy of high salt and high fat diet on kidney injury and adiposity. FASEB J 2014; 28 (1 Suppl): 1086–1. Google Scholar
Okuda M, Asakura K, Sasaki S, Shinozaki K . Twenty-four-hour urinary sodium and potassium excretion and associated factors in Japanese secondary school students. Hypertens Res 2016; 39: 524–529. ArticleCASPubMed Google Scholar
Yoshiike N, Miyoshi M . Epidemiological aspects of overweight and obesity in Japan—international comparisons. Japan J Clin Med 2013; 71: 207–216. Google Scholar
Kanazawa M, Yoshiike N, Osaka T, Numba Y, Zimmet P, Inoue S . Criteria and classification of obesity in japan and Asia-Oceania. Asia Pac J Clin Nutr 2002; 11: S732–S737. Article Google Scholar