Altered proliferation and networks in neural cells derived from idiopathic autistic individuals (original) (raw)
Piven J, Palmer P, Jacobi D, Childress D, Arndt S . Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 1997; 154: 185–190. ArticleCASPubMed Google Scholar
Ronald A, Happe F, Bolton P, Butcher LM, Price TS, Wheelwright S et al. Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 2006; 45: 691–699. ArticlePubMed Google Scholar
Garber K . Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science 2007; 317: 190–191. ArticleCASPubMed Google Scholar
Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539. ArticleCASPubMedPubMed Central Google Scholar
Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241. ArticleCASPubMedPubMed Central Google Scholar
Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384. ArticleCASPubMedPubMed Central Google Scholar
Chow ML, Pramparo T, Winn ME, Barnes CC, Li HR, Weiss L et al. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages. PLoS Genet 2012; 8: e1002592. ArticleCASPubMedPubMed Central Google Scholar
Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 2013; 155: 1008–1021. ArticleCASPubMedPubMed Central Google Scholar
Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013; 155: 997–1007. ArticleCASPubMedPubMed Central Google Scholar
Courchesne E, Campbell K, Solso S . Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 2011; 1380: 138–145. ArticleCASPubMed Google Scholar
Courchesne E, Redcay E, Morgan JT, Kennedy DP . Autism at the beginning: microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Dev Psychopathol 2005; 17: 577–597. ArticlePubMed Google Scholar
Hazlett HC, Poe MD, Gerig G, Styner M, Chappell C, Smith RG et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 2011; 68: 467–476. ArticlePubMedPubMed Central Google Scholar
Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001; 57: 245–254. ArticleCASPubMed Google Scholar
Courchesne E, Carper R, Akshoomoff N . Evidence of brain overgrowth in the first year of life in autism. JAMA 2003; 290: 337–344. ArticlePubMed Google Scholar
Shen MD, Nordahl CW, Young GS, Wootton-Gorges SL, Lee A, Liston SE et al. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 2013; 136 (Pt 9): 2825–2835. ArticlePubMedPubMed Central Google Scholar
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ et al. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011; 306: 2001–2010. ArticleCASPubMed Google Scholar
Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014; 370: 1209–1219. ArticleCASPubMedPubMed Central Google Scholar
Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676. ArticleCASPubMed Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920. ArticleCASPubMed Google Scholar
Freitas BC, Trujillo CA, Carromeu C, Yusupova M, Herai RH, Muotri AR . Stem cells and modeling of autism spectrum disorders. Exp Neurol 2012; 260: 33–43. ArticlePubMed Google Scholar
Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 2013; 503: 267–271. ArticleCASPubMedPubMed Central Google Scholar
Pasca SP, Portmann T, Voineagu I, Yazawa M, Shcheglovitov A, Pasca AM et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011; 17: 1657–1662. ArticleCASPubMedPubMed Central Google Scholar
Beltrao-Braga PC, Pignatari GC, Russo FB, Fernandes IR, Muotri AR . In-a-dish: induced pluripotent stem cells as a novel model for human diseases. Cytometry A 2013; 83: 11–17. ArticleCASPubMed Google Scholar
Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry 2015; 20: 1350–1365. ArticleCASPubMed Google Scholar
Gmitrowicz A, Kucharska A . Developmental disorders in the fourth edition of the American classification: diagnostic and statistical manual of mental disorders (DSM IV — optional book). Psychiatr Pol 1994; 28: 509–521. CASPubMed Google Scholar
Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams Syndrome Region, are strongly associated with autism. Neuron 2011; 70: 863–885. ArticleCASPubMedPubMed Central Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25: 2078–2079. ArticlePubMedPubMed Central Google Scholar
McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG . Transcriptional regulation of cortical neuron migration by POU domain factors. Science 2002; 295: 1528–1532. ArticleCASPubMed Google Scholar
Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164. ArticlePubMedPubMed Central Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872. ArticleCASPubMed Google Scholar
Voineagu I . Gene expression studies in autism: moving from the genome to the transcriptome and beyond. Neurobiol Dis 2012; 45: 69–75. ArticleCASPubMed Google Scholar
Chen Y, Huang WC, Sejourne J, Clipperton-Allen AE, Page DT . Pten mutations alter brain growth trajectory and allocation of cell types through elevated beta-catenin signaling. J Neurosci 2015; 35: 10252–10267. ArticleCASPubMedPubMed Central Google Scholar
Stein JL, de la Torre-Ubieta L, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 2014; 83: 69–86. ArticleCASPubMedPubMed Central Google Scholar
Belinson H, Nakatani J, Babineau BA, Birnbaum RY, Ellegood J, Bershteyn M et al. Prenatal beta-catenin/Brn2/Tbr2 transcriptional cascade regulates adult social and stereotypic behaviors. Mol Psychiatry 2016 (in press).
Rubenstein JL . Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 2010; 23: 118–123. ArticlePubMed Google Scholar
Zikopoulos B, Barbas H . Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013; 7: 609. ArticlePubMedPubMed Central Google Scholar
Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 2002; 16: 1760–1765. ArticleCASPubMedPubMed Central Google Scholar
Niethammer M, Kim E, Sheng M . Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 1996; 16: 2157–2163. ArticleCASPubMedPubMed Central Google Scholar
Takamori S, Rhee JS, Rosenmund C, Jahn R . Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 2000; 407: 189–194. ArticleCASPubMed Google Scholar
Hahamy A, Behrmann M, Malach R . The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 2015; 18: 302–309. ArticleCASPubMed Google Scholar
Davis G, Plaisted-Grant K . Low endogenous neural noise in autism. Autism 2014; 19: 351–356. ArticlePubMed Google Scholar
Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al. Functional organization of the transcriptome in human brain. Nat Neurosci 2008; 11: 1271–1282. ArticleCASPubMedPubMed Central Google Scholar
Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462: 213–217. ArticleCASPubMedPubMed Central Google Scholar
Carper RA, Moses P, Tigue ZD, Courchesne E . Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 2002; 16: 1038–1051. ArticlePubMed Google Scholar
Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002; 59: 184–192. ArticleCASPubMed Google Scholar
Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005; 62: 1366–1376. ArticlePubMed Google Scholar
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP et al. Mapping early brain development in autism. Neuron 2007; 56: 399–413. ArticleCASPubMed Google Scholar
Garcia-Jimenez C, Garcia-Martinez JM, Chocarro-Calvo A, De la Vieja A . A new link between diabetes and cancer: enhanced WNT/beta-catenin signaling by high glucose. J Mol Endocrinol 2014; 52: R51–R66. ArticleCASPubMed Google Scholar
Palsgaard J, Emanuelli B, Winnay JN, Sumara G, Karsenty G, Kahn CR . Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5). J Biol Chem 2012; 287: 12016–12026. ArticleCASPubMedPubMed Central Google Scholar
Doble BW, Woodgett JR . GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116 (Pt 7): 1175–1186. ArticleCASPubMed Google Scholar
Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 2001; 20: 252–259. ArticleCASPubMed Google Scholar
Siddle K . Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 2011; 47: R1–10. ArticleCASPubMed Google Scholar
Chenn A, Walsh CA . Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297: 365–369. ArticleCASPubMed Google Scholar
Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 2004; 131: 2791–2801. ArticleCASPubMed Google Scholar
Munji RN, Choe Y, Li G, Siegenthaler JA, Pleasure SJ . Wnt signaling regulates neuronal differentiation of cortical intermediate progenitors. J Neurosci 2011; 31: 1676–1687. ArticleCASPubMedPubMed Central Google Scholar
Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA . Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 2000; 97: 10236–10241. ArticleCASPubMedPubMed Central Google Scholar
Ciucci F, Putignano E, Baroncelli L, Landi S, Berardi N, Maffei L . Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS One 2007; 2: e475. ArticlePubMedPubMed Central Google Scholar
Yoshii A, Constantine-Paton M . BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 2007; 10: 702–711. ArticleCASPubMed Google Scholar
Sweatt JD . The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001; 76: 1–10. ArticleCASPubMed Google Scholar
Ozdinler PH, Macklis JD . IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 2006; 9: 1371–1381. ArticlePubMed Google Scholar
Corvin AP, Molinos I, Little G, Donohoe G, Gill M, Morris DW et al. Insulin-like growth factor 1 (IGF1) and its active peptide (1-3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neurosci Lett 2012; 520: 51–56. ArticleCASPubMed Google Scholar
Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015; 162: 375–390. ArticleCASPubMedPubMed Central Google Scholar