Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL (original) (raw)
Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92, 5510–5514 (1995) ArticleADSCAS Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999) ArticleADSCAS Google Scholar
Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol.2, 423–427 (2000) ArticleCAS Google Scholar
Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001) ArticleADSCAS Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001) ArticleADSCAS Google Scholar
Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA98, 9630–9635 (2001) ArticleADSCAS Google Scholar
Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J.20, 5197–5206 (2001) ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998) ArticleCAS Google Scholar
Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev.10, 54–64 (2000) ArticleCAS Google Scholar
Kamura, T. et al. Rbx1, a component of the VHL tumour suppressor complex and SCF ubiquitin ligase. Science284, 657–661 (1999) ArticleADSCAS Google Scholar
Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340 (2001) ArticleADSCAS Google Scholar
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001) ArticleCAS Google Scholar
Pugh, C. W., O'Rourke, J. F., Nagao, M., Gleadle, J. M. & Ratcliffe, P. J. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J. Biol. Chem.272, 11205–11214 (1997) ArticleCAS Google Scholar
Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA95, 7987–7992 (1998) ArticleADSCAS Google Scholar
Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumour suppressor function. Science284, 455–461 (1999) ArticleADSCAS Google Scholar
Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol.234, 946–950 (1993) ArticleCAS Google Scholar
Beroud, C. et al. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Res.26, 256–258 (1998) ArticleCAS Google Scholar
Fersht, A. R. et al. Hydrogen bonding and biological specificity analysed by protein engineering. Nature314, 235–238 (1985) ArticleADSCAS Google Scholar
Semenza, G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol.15, 551–578 (1999) ArticleCAS Google Scholar
Elson, D. A. et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev.15, 2520–2532 (2001) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326
Kissinger, C. R., Gehlhaar, D. K. & Fogel, D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr. D55, 484–491 (1999) ArticleCAS Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticleCAS Google Scholar
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8, 477–486 (1996) ArticleCAS Google Scholar
Hubbard, S. J. & Thornton, J. M. ‘NACCESS’, Computer Program Version 2.1.1 (Department of Biochemistry and Molecular Biology, Univ. Coll. London, London, 1996) Google Scholar
Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D52, 842–857 (1996) ArticleCAS Google Scholar
CCP4 The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Myszka, D. G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol.8, 50–57 (1997) ArticleCAS Google Scholar