Angiotensin-converting enzyme 2 is an essential regulator of heart function (original) (raw)
Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases. Part I: General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation104, 2746–2753 (2001) ArticleCASPubMed Google Scholar
Carretero, O. A. & Oparil, S. Essential hypertension. Part I: Definition and etiology. Circulation101, 329–335 (2000) ArticleCASPubMed Google Scholar
Jacob, H. J. Physiological genetics: Application to hypertension research. Clin. Exp. Pharm. Phys.26, 530–535 (1999) ArticleCAS Google Scholar
Rapp, J. P. Genetic analysis of inherited hypertension in the rat. Physiol. Rev.80, 135–172 (2000) ArticleCASPubMed Google Scholar
Stoll, M. et al. A genomic-systems biology map for cardiovascular function. Science294, 1723–1726 (2001) ArticleADSCASPubMed Google Scholar
Corvol, P. & Williams, T. A. in Handbook of Proteolytic Enzymes (eds Barrett, A. J., Rawlings, N. D. & Woessner, J. F.) 1066–1076 (Academic, London, 1998) Google Scholar
Skeggs, L. T., Dorer, F. E., Levine, M., Lentz, K. E. & Kahn, J. R. The biochemistry of the renin-angiotensin system. Adv. Exp. Med. Biol.130, 1–27 (1980) ArticleCASPubMed Google Scholar
Krege, J. H. et al. Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature375, 146–148 (1995) ArticleADSCASPubMed Google Scholar
Esther, C. R. et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology and reduced male fertility. Lab. Invest.74, 953–965 (1996) CASPubMed Google Scholar
Wuyts, B., Delanghe, J. & De Buyzere, M. Angiotensin I-converting enzyme insertion/deletion polymorphism: clinical implications. Acta Clin. Belg.52, 338–349 (1997) ArticleCASPubMed Google Scholar
Elkind, M. S. & Sacco, R. L. Stroke risk factors and stroke prevention. Semin. Neurol.18, 429–440 (1998) ArticleCASPubMed Google Scholar
Hollenberg, N. K. Angiotensin converting enzyme inhibition and the kidney. Curr. Opin. Cardiol.3 (Suppl. 1), S19–S29 (1988) Article Google Scholar
Garg, R. & Yusuf, S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. J. Am. Med. Assoc.273, 1450–1456 (1995) ArticleCAS Google Scholar
Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem.275, 33238–33243 (2000) ArticleCASPubMed Google Scholar
Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res.87, e1–e8 (2000) ArticleCASPubMed Google Scholar
Cornell, M. J. et al. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J. Biol. Chem.270, 13613–13619 (1995) ArticleCASPubMed Google Scholar
Taylor, C. A., Coates, D. & Shirras, A. D. The Acer gene of Drosophila codes for an angiotensin-converting enzyme homologue. Gene181, 191–197 (1996) ArticleCASPubMed Google Scholar
Yagil, C. et al. Role of chromosome X in the Sabra rat model of salt-sensitive hypertension. Hypertension33 Part II, 261–265 (1999) ArticleCASPubMed Google Scholar
Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature353, 521–529 (1991) ArticleADSCASPubMed Google Scholar
Kloting, I., Voigt, B. & Kovacs, P. Metabolic features of newly established congenic diabetes-prone BB.SHR rat strains. Life Sci.62, 973–979 (1998) ArticleCASPubMed Google Scholar
Koike, G. et al. Cloning, characterization, and genetic mapping of the rat type 2 angiotensin II receptor gene. Hypertension26, 998–1002 (1995) ArticleCASPubMed Google Scholar
Laragh, J. H. Renovascular hypertension: a paradigm for all hypertension. J. Hypertens.4 (Suppl. 4), S79–S88 (1986) Google Scholar
Yagil, C. et al. Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance. J. Hypertens.14, 175–182 (1996) Article Google Scholar
Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem.269, 31334–31337 (1994) CASPubMed Google Scholar
Kloner, R. A., Bolli, R., Marban, E., Reinlib, L. & Braunwald, E. Medical and cellular implications of stunning, hibernation, and preconditioning: and NHLBI workshop. Circulation97, 1848–1867 (1998) ArticleCASPubMed Google Scholar
Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H. & Harris, A. L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res.61, 6669–6673 (2001) CASPubMed Google Scholar
Kietzmann, T., Roth, U. & Jungermann, K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood94, 4177–4185 (1999) CASPubMed Google Scholar
Giordano, F. J. et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc. Natl Acad. Sci. USA98, 5780–5785 (2001) ArticleADSCASPubMedPubMed Central Google Scholar
Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics153, 135–177 (1999) CASPubMedPubMed Central Google Scholar
Frasch, M., Hoey, T., Rushlow, C., Doyle, H. J. & Levine, M. Characterization and localization of the even-skipped protein of Drosophila. EMBO J.6, 749–759 (1987) ArticleCASPubMedPubMed Central Google Scholar
Azpiazu, N., Lawrence, P., Vincent, J-P. & Frasch, M. Segmentation and specification of the Drosophila mesoderm. Genes Dev.10, 3183–3194 (1996) ArticleCASPubMed Google Scholar
Zhizhang, Y. & Frasch, M. Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev. Gen.22, 187–200 (1998) Article Google Scholar
Cai, H. & Harrison, D. G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87, 840–844 (2000) ArticleCASPubMed Google Scholar
Enseleit, F., Hurlimann, D. & Luscher, T. F. Vascular protective effects of angiotensin converting enzymes inhibitors and their relation to clinical events. J. Cardiovasc. Pharmacol.37 (Suppl. 1), S21–S30 (2001) Article Google Scholar
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature397, 315–323 (1999) ArticleADSCASPubMed Google Scholar
Wickenden, A. D. et al. Targeted expression of a dominant-negative K(v)4.2 K( + ) channel subunit in the mouse heart. Circ. Res.85, 1067–1076 (1999) ArticleCASPubMed Google Scholar
Zvaritch, E. et al. The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J. Biol. Chem.275, 14985–14991 (2000) ArticleCASPubMed Google Scholar
Allred, A. J., Chappell, M. C., Ferrario, C. M. & Diz, D. I. Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am. J. Physiol. Renal279, F636–F645 (2000) ArticleCAS Google Scholar
Chappell, M. C., Milsted, A., Diz, D. I., Brosnihan, K. B. & Ferrario, C. M. Evidence for an intrinsic angiotensin system in the canine pancreas. J. Hypertens.9, 751–759 (1991) ArticleCASPubMed Google Scholar