Three-dimensional structure of the bacterial protein-translocation complex SecYEG (original) (raw)

References

  1. Matlack, K., Mothes, W. & Rapoport, T. Protein translocation: tunnel vision. Cell 92, 381–390 (1998)
    Article CAS Google Scholar
  2. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990)
    Article CAS Google Scholar
  3. Akimaru, J., Matsuyama, S. I., Tokuda, H. & Mizushima, S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc. Natl Acad. Sci. USA 88, 6545–6549 (1991)
    Article ADS CAS Google Scholar
  4. Gorlich, D., Prehn, S., Hartmann, E., Kalies, K. & Rapoport, T. A. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489–503 (1992)
    Article CAS Google Scholar
  5. Hanein, D. et al. Oligomeric ring of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996)
    Article CAS Google Scholar
  6. Ménétret, J.-F. et al. The structure of ribosome–channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000)
    Article Google Scholar
  7. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translocating 80S ribosome. Cell 107, 361–372 (2001)
    Article CAS Google Scholar
  8. Manting, E., van der Does, C., Remigy, H., Engel, A. & Driessen, A. J. M. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852–861 (2000)
    Article CAS Google Scholar
  9. Collinson, I. et al. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J. 20, 2462–2471 (2001)
    Article CAS Google Scholar
  10. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996)
    Article CAS Google Scholar
  11. Akiyama, Y. & Ito, K. Topology analysis of the SecY protein, an integral membrane protein involved in protein export in Escherichia coli. EMBO J. 6, 3465–3470 (1987)
    Article CAS Google Scholar
  12. Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756–2768 (1997)
    Article CAS Google Scholar
  13. Nishiyama, K., Hanada, M. & Tokuda, H. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J. 13, 3272–3277 (1994)
    Article CAS Google Scholar
  14. Bessonneau, P., Besson, V., Collinson, I. & Duong, F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21, 995–1003 (2002)
    Article CAS Google Scholar
  15. Kaufmann, A., Manting, E. H., Veenendaal, A. K., Driessen, A. J. & van der Does, C. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighbouring SecE. Biochemistry 38, 9115–9125 (1999)
    Article CAS Google Scholar
  16. Flower, A. M., Osborne, R. S. & Silhavy, T. J. The allele-specific synthetic lethality of prlA-prlG double mutants predicts interactive domains of SecY and SecE. EMBO J. 14, 884–893 (1995)
    Article CAS Google Scholar
  17. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)
    Article CAS Google Scholar
  18. Veenendaal, A. K., van der Does, C. & Driessen, A. J. Mapping the sites of interaction between SecY and SecE by cysteine scanning mutagenesis. J. Biol. Chem. 276, 32559–32566 (2001)
    Article CAS Google Scholar
  19. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)
    Article CAS Google Scholar
  20. van der Wolk, J. P., de Wit, J. G. & Driessen, A. J. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16, 7297–7304 (1997)
    Article CAS Google Scholar
  21. Eichler, J., Brunner, J. & Wickner, W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. EMBO J. 16, 2188–2196 (1997)
    Article CAS Google Scholar
  22. Shilton, B. et al. Escherichia coli SecA shape and dimensions. FEBS Lett. 436, 277–282 (1998)
    Article ADS CAS Google Scholar
  23. Kleymann, G., Ostermeier, C., Heitmann, K., Haase, W. & Michel, H. Use of antibody fragments (Fv) in immunocytochemistry. J. Histochem. Cytochem. 43, 607–614 (1995)
    Article CAS Google Scholar
  24. Fujimoto, K. SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application. Histochem. Cell Biol. 107, 87–96 (1997)
    Article CAS Google Scholar
  25. Henderson, R., Baldwin, J. M., Downing, K. H. & Zemlin, F. Structure of purple membrane from Halobacterium halobium. Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19, 147–178 (1986)
    Article CAS Google Scholar
  26. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996)
    Article CAS Google Scholar
  27. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996)
    Article CAS Google Scholar
  28. Unger, V. M. Assessment of electron crystallographic data obtained from two-dimensional crystals of biological specimens. Acta Crystallogr. D 56, 1259–1269 (2000)
    Article CAS Google Scholar
  29. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  30. Jones, T. A., Zou, J. Y., Cowans, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps. Acta Crystallogr. 47, 110–119 (1991)
    Article Google Scholar

Download references