Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex (original) (raw)

References

  1. Haber, J. E. The many interfaces of Mre11. Cell 95, 583–586 (1998)
    Article CAS Google Scholar
  2. Petrini, J. H. The mammalian Mre11–Rad50–nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am. J. Hum. Genet. 64, 1264–1269 (1999)
    Article CAS Google Scholar
  3. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000)
    Article CAS Google Scholar
  4. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998)
    Article CAS Google Scholar
  5. Weiden, M. D. & Ginsberg, H. S. Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc. Natl Acad. Sci. USA 91, 153–157 (1994)
    Article ADS CAS Google Scholar
  6. Boyer, J., Rohleder, K. & Ketner, G. Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263, 307–312 (1999)
    Article CAS Google Scholar
  7. Nevels, M., Tauber, B., Spruss, T., Wolf, H. & Dobner, T. “Hit-and-run” transformation by adenovirus oncogenes. J. Virol. 75, 3089–3094 (2001)
    Article CAS Google Scholar
  8. Bridge, E. & Ketner, G. Redundant control of adenovirus late gene expression by early region 4. J. Virol. 63, 631–638 (1989)
    CAS PubMed PubMed Central Google Scholar
  9. Halbert, D. N., Cutt, J. R. & Shenk, T. Adenoviral early region 4 encodes functions required for efficient DNA replication, late expression, and host cell shutoff. J. Virol. 56, 250–257 (1985)
    CAS PubMed PubMed Central Google Scholar
  10. Weinberg, D. H. & Ketner, G. Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J. Virol. 57, 833–838 (1986)
    CAS PubMed PubMed Central Google Scholar
  11. Bridge, E. & Ketner, G. Interaction of adenoviral E4 and E1b products in late gene expression. Virology 174 (1990)
  12. Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999)
    Article CAS Google Scholar
  13. Lombard, D. B. & Guarente, L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 60, 2331–2334 (2000)
    CAS PubMed Google Scholar
  14. Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21, 6006–6016 (2001)
    Article CAS Google Scholar
  15. Wu, G., Lee, W. H. & Chen, P. L. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. J. Biol. Chem. 275, 30618–30622 (2000)
    Article CAS Google Scholar
  16. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998)
    Article ADS CAS Google Scholar
  17. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000)
    Article ADS CAS Google Scholar
  18. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115–119 (2000)
    Article CAS Google Scholar
  19. Wu, X. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477–482 (2000)
    Article ADS CAS Google Scholar
  20. Cathomen, T. & Weitzman, M. D. A functional complex of adenovirus proteins E1B-55 kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity. J. Virol. 74, 11407–11412 (2000)
    Article CAS Google Scholar
  21. Querido, E. et al. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117 (2001)
    Article CAS Google Scholar
  22. Doucas, V. et al. Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 10, 196–207 (1996)
    Article CAS Google Scholar
  23. de Vries, E., van Driel, W., Bergsma, W. G., Arnberg, A. C. & van der Vliet, P. C. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208, 65–78 (1989)
    Article CAS Google Scholar
  24. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999)
    Article CAS Google Scholar
  25. Haber, J. E. A super new twist on the initiation of meiotic recombination. Cell 89, 163–166 (1997)
    Article CAS Google Scholar
  26. Bressan, D. A., Olivares, H. A., Nelms, B. E. & Petrini, J. H. Alteration of N-terminal phosphoesterase signature motifs inactivates Saccharomyces cerevisiae Mre11. Genetics 150, 591–600 (1998)
    CAS PubMed PubMed Central Google Scholar
  27. Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996)
    CAS PubMed PubMed Central Google Scholar
  28. Weinberg, D. H. & Ketner, G. A cell line that supports the growth of a defective early region 4 deletion mutant of human adenovirus type 2. Proc. Natl Acad. Sci. USA 80, 5383–5386 (1983)
    Article ADS CAS Google Scholar
  29. Weitzman, M. D., Fisher, K. J. & Wilson, J. M. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J. Virol. 70, 1845–1854 (1996)
    CAS PubMed PubMed Central Google Scholar

Download references