RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO (original) (raw)
Prakash, S., Sung, P. & Prakash, L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet.27, 33–70 (1993) ArticleCAS Google Scholar
Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (American Society for Microbiology, Washington, 1995) Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001) ArticleADSCAS Google Scholar
Ulrich, H. D. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. Eukaryotic Cell1, 1–10 (2002) ArticleCAS Google Scholar
Jentsch, S., McGrath, J. P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature329, 131–134 (1987) ArticleADSCAS Google Scholar
Broomfield, S., Chow, B. L. & Xiao, W. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl Acad. Sci. USA95, 5678–5683 (1998) ArticleADSCAS Google Scholar
Hofmann, R. M. & Pickart, C. M. Noncanonical _MMS2_-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell96, 645–653 (1999) ArticleCAS Google Scholar
Xiao, W. et al. Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat. Res.435, 1–11 (1999) ArticleCAS Google Scholar
Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J.19, 3388–3397 (2000) ArticleCAS Google Scholar
Moraes, T. F. et al. Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2-hUbc13. Nature Struct. Biol.8, 669–673 (2001) ArticleCAS Google Scholar
VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. & Wolberger, C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell105, 711–720 (2001) ArticleCAS Google Scholar
Bailly, V., Lamb, J., Sung, P., Prakash, S. & Prakash, L. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev.8, 811–820 (1994) ArticleCAS Google Scholar
Pickart, C. M. Ubiquitin in chains. Trends Biochem. Sci.25, 544–548 (2000) ArticleCAS Google Scholar
Melchior, F. SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol.16, 591–626 (2000) ArticleCAS Google Scholar
Müller, S., Hoege, C., Pyrowolakis, G. & Jentsch, S. SUMO, ubiquitin's mysterious cousin. Nature Rev. Mol. Cell Biol.2, 202–210 (2001) Article Google Scholar
Hochstrasser, M. New structural clues to substrate specificity in the “ubiquitin system”. Mol. Cell9, 453–454 (2002) ArticleCAS Google Scholar
Tsurimoto, T. PCNA binding proteins. Frontiers Biosci.4, 849–858 (1999) Article Google Scholar
Warbrick, E. The puzzle of PCNA's many partners. BioEssays22, 997–1006 (2000) ArticleCAS Google Scholar
Bauer, G. A. & Burgers, P. M. Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. Nucleic Acids Res.18, 261–265 (1990) ArticleCAS Google Scholar
Johnson, E. S. & Blobel, G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol.147, 981–994 (1999) ArticleCAS Google Scholar
Torres-Ramos, C. A., Yoder, B. L., Burgers, P. M., Prakash, S. & Prakash, L. Requirement of proliferating cell nuclear antigen in _RAD6_-dependent postreplicational DNA repair. Proc. Natl Acad. Sci. USA93, 9676–9681 (1996) ArticleADSCAS Google Scholar
Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol.15, 1265–1273 (1995) ArticleCAS Google Scholar
Ayyagari, R., Impellizzeri, K. J., Yoder, B. L., Gary, S. L. & Burgers, P. M. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol.15, 4420–4429 (1995) ArticleCAS Google Scholar
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell102, 549–552 (2000) ArticleCAS Google Scholar
Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell108, 345–356 (2002) ArticleCAS Google Scholar
Prakash, L. The RAD6 gene and protein of Saccharomyces cerevisiae. Ann. NY Acad. Sci.726, 267–273 (1994) ArticleADSCAS Google Scholar
Johnson, R. E. et al. _Saccharomyces cerevisiae RAD5_-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol.12, 3807–3818 (1992) ArticleCAS Google Scholar
Lawrence, C. W. & Christensen, R. B. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol.139, 866–887 (1979) CASPubMedPubMed Central Google Scholar
Schiestl, R. H., Prakash, S. & Prakash, L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics124, 817–831 (1990) CASPubMedPubMed Central Google Scholar
Ulrich, H. D. The srs2 suppressor of UV sensitivity acts specifically on the _RAD5_- and _MMS2_-dependent branch of the RAD6 pathway. Nucleic Acids Res.29, 3487–3494 (2001) ArticleCAS Google Scholar
Broomfield, S. & Xiao, W. Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free post-replication repair but not for damage-induced mutagenesis. Nucleic Acids Res.30, 732–739 (2002) ArticleCAS Google Scholar
Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408, 221–225 (2000) ArticleADSCAS Google Scholar
Krishna, T. S. et al. Crystallization of proliferating cell nuclear antigen (PCNA) from Saccharomyces cerevisiae. J. Mol. Biol.241, 265–268 (1994) ArticleCAS Google Scholar
Amin, N. S. & Holm, C. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics144, 479–493 (1996) CASPubMedPubMed Central Google Scholar
Eissenberg, J. C., Ayyagari, R., Gomes, X. V. & Burgers, P. M. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase δ and DNA polymerase ɛ. Mol. Cell. Biol.17, 6367–6378 (1997) ArticleCAS Google Scholar
Johnson, E. S. & Gupta, A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell106, 735–744 (2001) ArticleCAS Google Scholar
Cejka, P., Vondrejs, V. & Storchova, Z. Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity. Genetics159, 953–963 (2001) CASPubMedPubMed Central Google Scholar
Xiao, W., Chow, B. L., Broomfield, S. & Hanna, M. The Saccharomyces cerevisiae RAD6 group is composed of an error-prone and two error-free postreplication repair pathways. Genetics155, 1633–1641 (2000) CASPubMedPubMed Central Google Scholar
Torres-Ramos, C. A., Prakash, S. & Prakash, L. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol.22, 2419–2426 (2002) ArticleCAS Google Scholar
Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell103, 351–361 (2000) ArticleCAS Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001) ArticleADSCAS Google Scholar
Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell102, 67–76 (2000) ArticleCAS Google Scholar
Galan, J. M. & Haguenauer-Tsapis, R. Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J.16, 5847–5854 (1997) ArticleCAS Google Scholar
Brusky, J., Zhu, Y. & Xiao, W. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet.37, 168–174 (2000) ArticleCAS Google Scholar
Tateishi, S., Sakuraba, Y., Masuyama, S., Inoue, H. & Yamaizumi, M. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc. Natl Acad. Sci. USA97, 7927–7932 (2000) ArticleADSCAS Google Scholar
Li, Z., Xiao, W., McCormick, J. J. & Maher, V. M. Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage. Proc. Natl Acad. Sci. USA99, 4459–4464 (2002) ArticleADSCAS Google Scholar
Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell2, 233–239 (1998) ArticleCAS Google Scholar
Seufert, W., Futcher, B. & Jentsch, S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature373, 78–81 (1995) ArticleADSCAS Google Scholar
Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast15, 963–972 (1999) ArticleCAS Google Scholar
Li, S. J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature398, 246–251 (1999) ArticleADSCAS Google Scholar
Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δ domain. Cell78, 787–798 (1994) ArticleCAS Google Scholar
Müller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem.275, 13321–13329 (2000) Article Google Scholar