Absolute comparison of simulated and experimental protein-folding dynamics (original) (raw)

References

  1. Eaton, W. A., Muñoz, V., Thompson, P. A., Henry, E. R. & Hofrichter, J. Kinetics and dynamics of loops, α-helices, β-hairpins, and fast-folding proteins. Acc. Chem. Res. 31, 745–753 (1998)
    Article CAS Google Scholar
  2. Mayor, U., Johnson, C. M., Daggett, V. & Fersht, A. R. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl Acad. Sci. USA 97, 13518–13522 (2000)
    Article ADS CAS Google Scholar
  3. Duan, Y. & Kollman, P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740–744 (1998)
    Article ADS CAS Google Scholar
  4. Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995)
    Article ADS CAS Google Scholar
  5. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997)
    Article CAS Google Scholar
  6. Shea, J. & Brooks, C. L. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem. 52, 499–535 (2001)
    Article ADS CAS Google Scholar
  7. Ferrara, P., Apostolakis, J. & Caflisch, A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J. Phys. Chem. B 104, 5000–5010 (2000)
    Article CAS Google Scholar
  8. Daura, X., Jaun, B., Seebach, D., Gunsteren, W. F. v. & Mark, A. E. Reversible peptide folding in solution by molecular dynamics simulation. J. Mol. Biol. 280, 925–932 (1998)
    Article CAS Google Scholar
  9. Ferrara, P. & Caflisch, A. Folding simulations of a three-stranded antiparallel β-sheet peptide. Proc. Natl Acad. Sci. USA 97, 10780–10785 (2000)
    Article ADS CAS Google Scholar
  10. Zagrovic, B., Sorin, E. J. & Pande, V. S. β-hairpin folding simulations in atomistic detail using an implicit solvent model. J. Mol. Biol. 313, 151–169 (2001)
    Article CAS Google Scholar
  11. Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992)
    Article CAS Google Scholar
  12. Lapidus, L. J., Eaton, W. A. & Hofrichter, J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl Acad. Sci. USA 97, 7220–7225 (2000)
    Article ADS CAS Google Scholar
  13. Bieri, O. et al. The speed limit of protein folding measure by triplet-triplet energy transfer. Proc. Natl Acad. Sci. USA 96, 9597–9601 (1999)
    Article ADS CAS Google Scholar
  14. Shirts, M. & Pande, V. S. Screen savers of the world unite. Science 290, 1903–1904 (2000)
    Article CAS Google Scholar
  15. Struthers, M., Ottesen, J. J. & Imperiali, B. Design and NMR analyses of compact, independently folded BBA motifs. Folding Des. 3, 95–103 (1998)
    Article CAS Google Scholar
  16. Struthers, M. D., Cheng, R. C. & Imperiali, B. Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science 271, 342–345 (1996)
    Article ADS CAS Google Scholar
  17. Ervin, J., Sabelko, J. & Gruebele, M. Submicrosecond real-time fluorescence detection: application to protein folding. J. Photochem. Photobiol. Biol. 54, 1–15 (2000)
    Article CAS Google Scholar
  18. Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68, 2959–2970 (1978)
    Article ADS CAS Google Scholar
  19. Gilmanshin, R., Williams, S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl Acad. Sci. USA 94, 3709–3713 (1997)
    Article ADS CAS Google Scholar
  20. Ballew, R. M., Sabelko, J. & Gruebele, M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc. Natl Acad. Sci. USA 93, 5759–5764 (1996)
    Article ADS CAS Google Scholar
  21. Plaxco, K. W., Simons, K. T. & Baker, D. Contact order transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998)
    Article CAS Google Scholar
  22. Moore, S. & Stein, W. Amino acid determination, methods and techniques. J. Biol. Chem. 192, 663–670 (1951)
    CAS PubMed Google Scholar
  23. Ponder, J. W. & Richards, F. M. An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J. Comput. Chem. 8, 1016–1024 (1987)
    Article CAS Google Scholar
  24. Fletcher, R. & Powell, M. J. D. A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)
    Article MathSciNet Google Scholar
  25. Koehl, P. & Delarue, M. On the use of a self-consistent mean field theory to predict protein side chain conformations and estimate their entropies. J. Mol. Biol. 239, 249–275 (1994)
    Article CAS Google Scholar
  26. Qiu, D., Shenkin, P. S., Hollinger, F. P. & Still, W. C. The GB/SA Continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J. Phys. Chem. A 101, 3005–3014 (1997)
    Article CAS Google Scholar
  27. Jorgensen, W. L. & Tirado-Rives, J. The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988)
    Article CAS Google Scholar
  28. Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)
    Article ADS CAS Google Scholar
  29. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)
    Article CAS Google Scholar

Download references