Absolute comparison of simulated and experimental protein-folding dynamics (original) (raw)
References
Eaton, W. A., Muñoz, V., Thompson, P. A., Henry, E. R. & Hofrichter, J. Kinetics and dynamics of loops, α-helices, β-hairpins, and fast-folding proteins. Acc. Chem. Res.31, 745–753 (1998) ArticleCAS Google Scholar
Mayor, U., Johnson, C. M., Daggett, V. & Fersht, A. R. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl Acad. Sci. USA97, 13518–13522 (2000) ArticleADSCAS Google Scholar
Duan, Y. & Kollman, P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science282, 740–744 (1998) ArticleADSCAS Google Scholar
Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. Navigating the folding routes. Science267, 1619–1620 (1995) ArticleADSCAS Google Scholar
Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nature Struct. Biol.4, 10–19 (1997) ArticleCAS Google Scholar
Shea, J. & Brooks, C. L. From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem.52, 499–535 (2001) ArticleADSCAS Google Scholar
Ferrara, P., Apostolakis, J. & Caflisch, A. Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J. Phys. Chem. B104, 5000–5010 (2000) ArticleCAS Google Scholar
Daura, X., Jaun, B., Seebach, D., Gunsteren, W. F. v. & Mark, A. E. Reversible peptide folding in solution by molecular dynamics simulation. J. Mol. Biol.280, 925–932 (1998) ArticleCAS Google Scholar
Ferrara, P. & Caflisch, A. Folding simulations of a three-stranded antiparallel β-sheet peptide. Proc. Natl Acad. Sci. USA97, 10780–10785 (2000) ArticleADSCAS Google Scholar
Zagrovic, B., Sorin, E. J. & Pande, V. S. β-hairpin folding simulations in atomistic detail using an implicit solvent model. J. Mol. Biol.313, 151–169 (2001) ArticleCAS Google Scholar
Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol.224, 771–782 (1992) ArticleCAS Google Scholar
Lapidus, L. J., Eaton, W. A. & Hofrichter, J. Measuring the rate of intramolecular contact formation in polypeptides. Proc. Natl Acad. Sci. USA97, 7220–7225 (2000) ArticleADSCAS Google Scholar
Bieri, O. et al. The speed limit of protein folding measure by triplet-triplet energy transfer. Proc. Natl Acad. Sci. USA96, 9597–9601 (1999) ArticleADSCAS Google Scholar
Shirts, M. & Pande, V. S. Screen savers of the world unite. Science290, 1903–1904 (2000) ArticleCAS Google Scholar
Struthers, M., Ottesen, J. J. & Imperiali, B. Design and NMR analyses of compact, independently folded BBA motifs. Folding Des.3, 95–103 (1998) ArticleCAS Google Scholar
Struthers, M. D., Cheng, R. C. & Imperiali, B. Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science271, 342–345 (1996) ArticleADSCAS Google Scholar
Ervin, J., Sabelko, J. & Gruebele, M. Submicrosecond real-time fluorescence detection: application to protein folding. J. Photochem. Photobiol. Biol.54, 1–15 (2000) ArticleCAS Google Scholar
Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys.68, 2959–2970 (1978) ArticleADSCAS Google Scholar
Gilmanshin, R., Williams, S., Callender, R. H., Woodruff, W. H. & Dyer, R. B. Fast events in protein folding: relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl Acad. Sci. USA94, 3709–3713 (1997) ArticleADSCAS Google Scholar
Ballew, R. M., Sabelko, J. & Gruebele, M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc. Natl Acad. Sci. USA93, 5759–5764 (1996) ArticleADSCAS Google Scholar
Plaxco, K. W., Simons, K. T. & Baker, D. Contact order transition state placement and the refolding rates of single domain proteins. J. Mol. Biol.277, 985–994 (1998) ArticleCAS Google Scholar
Moore, S. & Stein, W. Amino acid determination, methods and techniques. J. Biol. Chem.192, 663–670 (1951) CASPubMed Google Scholar
Ponder, J. W. & Richards, F. M. An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J. Comput. Chem.8, 1016–1024 (1987) ArticleCAS Google Scholar
Fletcher, R. & Powell, M. J. D. A rapidly convergent descent method for minimization. Comput. J.6, 163–168 (1963) ArticleMathSciNet Google Scholar
Koehl, P. & Delarue, M. On the use of a self-consistent mean field theory to predict protein side chain conformations and estimate their entropies. J. Mol. Biol.239, 249–275 (1994) ArticleCAS Google Scholar
Qiu, D., Shenkin, P. S., Hollinger, F. P. & Still, W. C. The GB/SA Continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J. Phys. Chem. A101, 3005–3014 (1997) ArticleCAS Google Scholar
Jorgensen, W. L. & Tirado-Rives, J. The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc.110, 1657–1666 (1988) ArticleCAS Google Scholar
Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys.52, 24–34 (1983) ArticleADSCAS Google Scholar
Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers22, 2577–2637 (1983) ArticleCAS Google Scholar