Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans (original) (raw)

References

  1. Greenwald, I. Caenorhabditis elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 519–541 (Cold Spring Harbor Press, Cold Spring Harbor, New York, 1997)
    Google Scholar
  2. Levitan, D. & Greenwald, I. LIN-12 protein expression and localization during vulval development in C. elegans. Development 125, 3101–3109 (1998)
    CAS PubMed Google Scholar
  3. Stevens, J. L., Cantin, G. T., Wang, G., Shevchenko, A. & Berk, A. J. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296, 755–758 (2002)
    Article ADS CAS Google Scholar
  4. Singh, N. & Han, M. sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes Dev. 9, 2251–2265 (1995)
    Article CAS Google Scholar
  5. Wilkinson, H. A. & Greenwald, I. Spatial and temporal patterns of lin-12 expression during C. elegans hermaphrodite development. Genetics 141, 513–526 (1995)
    CAS PubMed PubMed Central Google Scholar
  6. Wilkinson, H. A., Fitzgerald, K. & Greenwald, I. Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell 79, 1187–1198 (1994)
    Article CAS Google Scholar
  7. Burdine, R. D., Branda, C. S. & Stern, M. J. EGL-17 (FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development 125, 1083–1093 (1998)
    CAS PubMed Google Scholar
  8. Grant, B. & Greenwald, I. Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in C. elegans. Development 124, 637–644 (1997)
    CAS PubMed Google Scholar
  9. Fire, A., Harrison, S. W. & Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990)
    Article CAS Google Scholar
  10. Sandoval, I. V., Martinez-Arca, S., Valdueza, J., Palacios, S. & Holman, G. D. Distinct reading of different structural determinants modulates the dileucine-mediated transport steps of the lysosomal membrane protein LIMPII and the insulin-sensitive glucose transporter GLUT4. J. Biol. Chem. 275, 39874–39885 (2000)
    Article CAS Google Scholar
  11. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999)
    Article CAS Google Scholar
  12. Dietrich, J. et al. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor. J. Biol. Chem. 271, 11441–11448 (1996)
    Article CAS Google Scholar
  13. Dittrich, E., Haft, C. R., Muys, L., Heinrich, P. C. & Graeve, L. A di-leucine motif and an upstream serine in the interleukin-6 (IL-6) signal transducer gp130 mediate ligand-induced endocytosis and down-regulation of the IL-6 receptor. J. Biol. Chem. 271, 5487–5494 (1996)
    Article CAS Google Scholar
  14. Ehrlich, M., Shmuely, A. & Henis, Y. I. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-beta receptor. J. Cell Sci. 114, 1777–1786 (2001)
    CAS PubMed Google Scholar
  15. Kil, S. J. & Carlin, C. EGF receptor residues leu679, leu680 mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell. Physiol. 185, 47–60 (2000)
    Article CAS Google Scholar
  16. Fitzgerald, K., Wilkinson, H. A. & Greenwald, I. glp-1 can substitute for lin-12 in specifying cell fate decisions in Caenorhabditis elegans. Development 119, 1019–1027 (1993)
    CAS PubMed Google Scholar
  17. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999)
    Article CAS Google Scholar
  18. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001)
    CAS PubMed PubMed Central Google Scholar
  19. Nonet, M. L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J. Neurosci. Methods 89, 33–40 (1999)
    Article CAS Google Scholar
  20. Hubbard, E. J., Wu, G., Kitajewski, J. & Greenwald, I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11, 3182–3193 (1997)
    Article CAS Google Scholar
  21. Heitzler, P. & Simpson, P. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development 117, 1113–1123 (1993)
    CAS PubMed Google Scholar
  22. Jacobsen, T. L., Brennan, K., Arias, A. M. & Muskavitch, M. A. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 125, 4531–4540 (1998)
    CAS PubMed Google Scholar
  23. Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. & Kintner, C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766 (1995)
    Article ADS CAS Google Scholar
  24. Heitzler, P., Bourouis, M., Ruel, L., Carteret, C. & Simpson, P. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122, 161–171 (1996)
    CAS PubMed Google Scholar
  25. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001)
    Article CAS Google Scholar
  26. Mello, C. & Fire, A. Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds Epstein, H. F. & Shakes, D. C.) 451–482 (Academic, San Diego, 1995)
    Book Google Scholar
  27. Miller, D. M. III & Niemeyer, C. J. Expression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input. Development 121, 2877–2886 (1995)
    CAS PubMed Google Scholar
  28. Priess, J. R. & Hirsh, D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev. Biol. 117, 156–173 (1986)
    Article CAS Google Scholar
  29. Ambros, V. Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. Development 126, 1947–1956 (1999)
    CAS PubMed Google Scholar
  30. Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr. Biol. 5, 1416–1423 (1995)
    Article CAS Google Scholar

Download references