Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis (original) (raw)

References

  1. Topper, J. N. & Gimbrone, M. A. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Molec. Med. Today 5, 40–46 (1999)
    Article CAS Google Scholar
  2. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995)
    Article CAS PubMed Google Scholar
  3. Nerem, R. M., Harrison, D. G., Taylor, W. R. & Alexander, R. W. Hemodynamics and vascular endothelial biology. J. Cardiovasc. Pharmacol. 21, S6–S10 (1993)
    Article CAS PubMed Google Scholar
  4. Takahashi, M., Ishida, T., Traub, O., Corson, M. A. & Berk, B. C. Mechanotransduction in endothelial cells: Temporal signaling events in response to shear stress. J. Vasc. Res. 34, 212–219 (1997)
    Article CAS PubMed Google Scholar
  5. Taber, L. A. Mechanical aspects of cardiac development. Prog. Biophys. Mol. Biol. 69, 237–255 (1998)
    Article CAS PubMed Google Scholar
  6. Chen, J. N. & Fishman, M. C. Genetics of heart development. Trends Genet. 16, 383–388 (2000)
    Article CAS PubMed Google Scholar
  7. Srivastava, D. & Olson, E. N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000)
    Article CAS PubMed Google Scholar
  8. Helmlinger, G., Geiger, R. V., Schreck, S. & Nerem, R. M. Effects of pulsatile flow on cultured vascular endothelial-cell morphology. J. Biomech. Eng. Trans. ASME 113, 123–131 (1991)
    Article CAS Google Scholar
  9. Olesen, S. P., Clapham, D. E. & Davies, P. F. Hemodynamic shear-stress activates a K+ current in vascular endothelial cells. Nature 331, 168–170 (1988)
    Article ADS CAS PubMed Google Scholar
  10. Stainier, D. Y. R. & Fishman, M. C. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc. Med. 4, 207–212 (1994)
    Article CAS PubMed Google Scholar
  11. Walsh, E. C. & Stainier, D. Y. R. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001)
    Article ADS CAS PubMed Google Scholar
  12. Hou, P-C. L. & Burggren, W. W. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. Am. J. Physiol. Regul. Integr. Compar. Physiol. 38, R1126–R1132 (1995)
    Article Google Scholar
  13. Mankad, R. et al. Regional myocardial strain before and after mitral valve repair for severe mitral regurgitation. J. Cardiovasc. Magn. Res. 3, 257–266 (2001)
    Article CAS Google Scholar
  14. Willert, C. E. & Gharib, M. Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)
    Article Google Scholar
  15. Pelster, B. & Burggren, W. W. Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ. Res. 79, 358–362 (1996)
    Article CAS PubMed Google Scholar
  16. Long, Q. M. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105–4111 (1997)
    CAS PubMed Google Scholar
  17. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. & Gimbrone, M. A. Turbulent fluid shear-stress induces vascular endothelial-cell turnover in vitro. Proc. Natl Acad. Sci. USA 83, 2114–2117 (1986)
    Article ADS CAS PubMed PubMed Central Google Scholar
  18. Manasek, F. J. & Monroe, R. G. Early cardiac morphogenesis is independent of function. Dev. Biol. 27, 584–588 (1972)
    Article CAS PubMed Google Scholar
  19. Hogers, B., DeRuiter, M. C., GittenbergerdeGroot, A. C. & Poelmam, R. E. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ. Res. 80, 473–481 (1997)
    Article CAS PubMed Google Scholar
  20. Icardo, J. M. Developmental biology of the vertebrate heart. J. Exp. Zool. 275, 144–161 (1996)
    Article CAS PubMed Google Scholar
  21. Liao, E. C. et al. Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. Development 129, 649–659 (2002)
    CAS PubMed Google Scholar
  22. Stainier, D. Y. R. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996)
    CAS PubMed Google Scholar
  23. Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genet. 31, 106–110 (2002)
    Article CAS PubMed Google Scholar
  24. Meinhart, C. D., Wereley, S. T. & Santiago, J. G. PIV measurements of a microchannel flow. Exp. Fluids 27, 414–419 (1999)
    Article Google Scholar
  25. O'Brien, S. P. M., Wheeler, T. & Barker, D. J. P. Fetal Programming Influences on Development and Disease in Later Life (RCOG, London, 1999)
    Google Scholar
  26. Di Stefano, I., Koopmans, D. R. & Langille, B. L. Modulation of arterial growth of the rabbit carotid artery associated with experimental elevation of blood flow. J. Vasc. Res. 35, 1–7 (1998)
    Article CAS PubMed Google Scholar
  27. Langille, B. L. Flow-dependent Regulation of Vascular Function (eds Bevan, J. A., Kaley, G. & Rubanyi, G.) 277–299 (Oxford Press, New York, 1995)
    Book Google Scholar
  28. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic-development of the zebrafish. Dev. Dyn. 203, 253–310 (1995)
    Article CAS PubMed Google Scholar
  29. Westerfield, M. The Zebrafish Book (Univ. Oregon Press, Eugene, 1995)
    Google Scholar

Download references