Role for antisense RNA in regulating circadian clock function in Neurospora crassa (original) (raw)
References
Kumar, M. & Carmichael, G. G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev.62, 1415–1434 (1998) CASPubMedPubMed Central Google Scholar
Eddy, S. R. Non-coding RNA genes and the modern RNA world. Nature Rev. Genet.2, 919–929 (2001) ArticleCAS Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet.2, 59–67 (2001) ArticleCAS Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The noncoding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002) ArticleADSCAS Google Scholar
Ambros, V. MicroRNAs: tiny regulators with great potential. Cell107, 823–826 (2001) ArticleCAS Google Scholar
Dunlap, J. C. Molecular bases for circadian clocks. Cell96, 271–290 (1999) ArticleCAS Google Scholar
Cermakian, N. & Sassone-Corsi, P. Multilevel regulation of the circadian clock. Nature Rev. Mol. Cell Biol.1, 59–67 (2000) ArticleCAS Google Scholar
Hastings, M. H. Circadian clockwork: two loops are better than one. Nature Rev. Neurosci.1, 143–145 (2000) ArticleCAS Google Scholar
Aronson, B. D., Johnson, K. A., Loros, J. J. & Dunlap, J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science263, 1578–1584 (1994) ArticleADSCAS Google Scholar
Merrow, M. W. & Dunlap, J. C. Intergeneric complementation of a circadian rhythmicity defect: phylogenetic conservation of structure and function of the clock gene frequency. EMBO J.13, 2257–2266 (1994) ArticleCAS Google Scholar
Crosthwaite, S. K., Dunlap, J. C. & Loros, J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science276, 763–769 (1997) ArticleCAS Google Scholar
Cheng, P., Yang, Y. & Liu, Y. Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc. Natl Acad. Sci. USA98, 7408–7413 (2001) ArticleADSCAS Google Scholar
Collett, M. A., Dunlap, J. C. & Loros, J. J. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol. Cell. Biol.21, 2619–2628 (2001) ArticleCAS Google Scholar
Froehlich, A. C., Liu, Y., Loros, J. J. & Dunlap, J. C. White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science297, 815–819 (2002) ArticleADSCAS Google Scholar
Denault, D. L., Loros, J. J. & Dunlap, J. C. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J.20, 109–117 (2001) ArticleCAS Google Scholar
Merrow, M. et al. Circadian regulation of the light input pathway in Neurospora crassa. EMBO J.20, 307–315 (2001) ArticleCAS Google Scholar
Cheng, P., Yang, Y., Heintzen, C. & Liu, Y. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J.20, 101–108 (2001) ArticleCAS Google Scholar
Aronson, B. D., Johnson, K. A. & Dunlap, J. C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc. Natl Acad. Sci. USA91, 7683–7687 (1994) ArticleADSCAS Google Scholar
Crosthwaite, S. K., Loros, J. J. & Dunlap, J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell81, 1003–1012 (1995) ArticleCAS Google Scholar
Loros, J. J. & Dunlap, J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol.63, 757–794 (2001) ArticleCAS Google Scholar
Bell-Pedersen, D., Dunlap, J. C. & Loros, J. J. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev.6, 2382–2394 (1992) ArticleCAS Google Scholar
Johnson, C. H. Forty years of PRCs: what have we learned? Chronobiol. Int.16, 711–743 (1999) ArticleCAS Google Scholar
Heintzen, C., Loros, J. J. & Dunlap, J. C. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell104, 453–464 (2001) ArticleCAS Google Scholar
Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev.16, 790–795 (2002) ArticleCAS Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001) ArticleADSCAS Google Scholar
Sauman, I. & Reppert, S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron17, 889–900 (1996) ArticleCAS Google Scholar
Gotter, A. L., Levine, J. D. & Reppert, S. M. Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromosomes. Neuron24, 953–965 (1999) ArticleCAS Google Scholar
Johnson, K. A. Molecular Characterization of the Circadian Clock Locus Frequency of Neurospora crassa. Thesis, Dartmouth College (1993) Google Scholar
Roenneberg, T. & Taylor, W. Automated recordings of bioluminescence with special reference to the analysis of circadian rhythms. Methods Enzymol.305, 104–119 (2000) ArticleCAS Google Scholar
McClung, C. R., Fox, B. A. & Dunlap, J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature339, 558–562 (1989) ArticleADSCAS Google Scholar